Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка Испытания на прокаливаемость

Усовершенствованию процессов термической обработки во многом способствовало изучение и разработка рекомендаций использования таких технологических свойств стали, как наследственная зернистость [26—28] и прокаливаемость (последняя непосредственно вытекает из анализа диаграмм изотермического распада аустенита и влияния легирующих элементов на положение кривых распада аустенита). В 1951 г. оба эти свойства получили завершение как в части исследований, так и в практическом их использовании по методам испытаний стали на зернистость и прокаливаемость приняты ГОСТы 5639-51 и 5657-51.  [c.147]


Прокаливаемость углеродистой стали. Простые углеродистые стали широко применяются в машиностроении, но термическая обработка их сложна и не всегда дает в поточно-массовом производстве достаточно однородные и высокие механические свойства. Это объясняется тем, что при небольших колебаниях в содержании углерода, марганца и других элементов получается большое различие в прокаливаемости. Например, полученная в результате испытаний большого количества плавок стали марки 45 полоса прокаливаемости (фиг. 154) имеет большую ширину. Это доказывает, что прокаливаемость ее обнаруживает колебания в очень широких пределах. Объясняется это различиями в методе выплавки, разницей в содержании кислорода, азота и водорода, не определяемых при рядовых контрольных анализах, разной величиной природного зерна и разной степенью однородности аустенита в разных плавках. Поэтому необходимо производство стали с определенными узкими пределами прокаливаемости или ее дополнительная сортировка по суженным пределам прокаливаемости. Такая сортировка позволяет устанавливать более рациональный режим и более узкий интервал температур при закалке углеродистых сталей.  [c.242]

Прокаливаемость — технологическое свойство стали, от которого зависят объем упрочняемого при термической обработке металла, его форма и размеры после термической обработки из-за деформации и коробления. Удовлетворение требований машиностроителей по этому показателю на практике осуществляется металлургами главным образом путем отсортировки металлопроката, выдержавшего соответствующие испытания по согласованным нормативам. Как правило, контролируют промежуточную заготовку, хотя важнее определять прокаливаемость уже конечного продукта. В действующей НТД нормы по прокаливае-мости устанавливают в определенном диапазоне. Сужение диапазона норм прокаливаемости, хотя и допускается ГОСТами, но встречает естественные возражения поставщиков при оформлении заказов, так как уменьшается выход годного. Наиболее целесообразно включать в оценку не только уровень прокаливаемости, но и ее воспроизводимость в различных партиях через параметр q (см. выше) и учитывать его в цене на металл. Разработка и внедрение мероприятий по стабилизации прокаливаемости стали с помощью ЭВМ дают возможность точно определять эту характеристику, исходя из химического состава жидкой стали и условий ее реального передела. В сочетании с непрерывным способом разливки стали в этом случае может быть гарантирована однородность химического состава металла всей партии, что позволит значительно уменьшить разброс величины прокаливаемости.  [c.417]


По размерам холоднотянутая сталь должна соответствовать сортаментным стандартам. Макроструктура стали должна соответствовать нормам, приведенным для исходных марок горячекатаной стали. По требованию потребителя поставляется сталь с контролем на шиферный излом, с нормированной микроструктурой после термической обработки, с нормированной величиной зерна, с гарантированной степенью прокаливаемости, с нормированной чистотой по неметаллическим включениям, с нормированной величиной предела текучести, ударной вязкости. Правила приемки, методы испытания, условия маркировки изложены в ГОСТ 1051-59.  [c.35]

По распределению твердости в сечении прокаливаемость конструкционных сталей можно определить путем закалки прутков разного диаметра в воду или в масло, разрезки их и измерения твердости по сечению и построения соответствующих кривых. Ввиду сложности, трудоемкости и длительности этого способа, особенно в случае обработки прутков крупного сечения, он неудобен для массового производственного контроля. Разновидностью этого способа является закалка образцов конусной формы из неглубоко прокаливающихся сталей, разрезка их вдоль и измерение твердости по продольной оси. Конечно, разрезка закаленных образцов и здесь значительно усложняет испытание.  [c.196]

Лучше всего о прокаливаемости и поведении стали при термической обработке можно судить по диаграмме изотермического превращения аустенита. Диаграмма изотермического превращения аустенита дает общую характеристику стали данной марки, позволяет судить об изменениях, происходящих при термической обработке, и помогает объяснить происхождение и природу структур, полученных при закалке. Однако построение диаграммы изотермического превращения аустенита требует проведения длительных испытаний по довольно сложной методике. При этом определение точек у перегиба кривой начала превращения на диаграмме изотермического превращения вблизи оси ординат недостаточно надежно и точно для неглубоко прокаливающихся сталей  [c.196]

Основными характеристиками, которые обычно определяют на углеродистых сталях, являются критический диаметр (метод торцовой закалки), глубина прокаливаемости (по излому образцов, прошедших обработку в соответствии с требованиями ГОСТ 1435—74) и твердость после закалки и последующего отпуска. Определение прочностных свойств рассматриваемых материалов, так же как и для других групп высокотвердых сталей, целесообразно проводить при испытаниях на изгиб в условиях сосредоточенного нагружения (во избежание смятия на опорах) и образцов сравнительно малых сечений, При этом следует помнить, что получаемые результаты имеют довольно условный характер применительно к инструменту диаметром более 10—15 мм в связи с образованием структурной неоднородности по сечению.  [c.5]

Полная прокаливаемость высокопрочных сталей при термической обработке весьма важна. Неполная прокаливаемость при закалке, в результате чего в структуре появляется феррит, приводит не только к понижению прочности, но и к уменьшению пластичности. Особенно резко это проявляется при испытании образцов большого сечения. На рис. 8 показаны разрушенные при растяжении гладкие образцы диаметром 35 мм. из стали  [c.18]

При разрезке кованых заготовок толщина пластин установлена 25—30 мм из соображений, что размеры щек кривошипов и толщин стемок сверленых шеек коленчатых валов находят ся в пределах 25—30 мм. Установлением указанной толщины пластин были соблюдены условия для получения глубины прокаливаемости кованых заготовок, соответствующей глубине прокаливаемости шеек коленчатых валов. Вследствие этого принятая метЪдика термической обработки прокованных заготовок позволяла сравнивать результаты механических испытаний их с такими же испытаниями коленчатых валов и, кроме того, выявить истинное влияние степени обжатия на свойства стали, так как толщина всех пластин, из котЬрых готовились образцы для механических испытаний, была одинаковой.  [c.32]

Используя нагрев при прокатке, можно значительно повысить механические свойства сортового проката из низкоуглеродистых и низколегированных сталей применением высокотемпературной термомеханической обработки (В. Т. М. О.). Для этого горячее деформирование заканчивают при температурах, близких к критической точке, далее проводят закалку на мартенсит (в низкоуглеродистых сталях образуются структуры феррито-цементит-ного типа). При В. Т. М. О. могут быть получены высокие механические свойства. Так, пруток диаметром 19 мм из стали 45 после охлаждения с температуры 900° С (температура выхода из последней клети прокатного стана) водой и отпуска при 300° С имеет предел прочности при растяжении 140—200 кгс/мм (1400— 2000 МН/м ). После термической обработки сортового проката контролируют твердость на прессе Бринелля, качество излома, макро- и микроструктуру, глубину обезуглероженного слоя, механические свойства (испытание на растяжение и удар) и прокаливаемость.  [c.210]


Испытания на прокаливаемость методом торцевой закалки показали, что наибольшей прокаливаемостью обладает сталь 30Г2Р. Сталь 40Х обладает несколько большей (на I - 2 НКСэ) твердостью закаленного торца, что объясняется большим содержанием углерода, чем у стали 30Г2Р. Большая прокаливаемость стали 30Г2Р обеспечивает равномерные механические свойства в деталях с большим диаметром сечения и стабильность при термической обработке.  [c.97]

Прокаливаемость рельсовой стали в обычном понимании невелика. При испытаниях торцовых образцов граница прокаливаемости лежит на расстоянии 4—5 мм от закаливаемого торца. Однако после термической обработки зона измененных структур и повышенных прочностных характерисггик распространяется глубоко, захватывая практически всю голоику рельса. Размеры зерна в рельсах после прокатки довольно крупные (№ 2—4 по стандартной шкале), несмотря на раскисление алюминием в количестве 750 г/г (Кузнецкий металлургический комбинат), Это объясняется тем, что температура конца прокатки лежит выше 1000° при повторном невысоком нагреве (800°) зерно измельчается до № 6—8 по стандартной шкале.  [c.944]


Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.286 ]



ПОИСК



Испытания прокаливаемость

Прокаливаемость



© 2025 Mash-xxl.info Реклама на сайте