Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль качества воды, пара и конденсата

Контроль качества воды, пара и конденсата 622—646 Коэффициент передачи 38—42  [c.697]

ВТИ разработана инструкция по ведению водного режима энергоблоков 300 МВт с помощью автоматических приборов химического контроля [6-9]. Предусмотренная инструкцией схема автоматического непрерывного контроля качества питательной воды, пара и конденсата турбины энергоблока 300 МВт приведена на рис, 6-7. Важнейшие технические характеристики автоматических приборов, использованных в схеме, представлены в табл. 6-3.  [c.175]


Методики контроля качества воды, пара (конденсата), реагентов и отложений помещены в соответствующей инструкции [Л. 1]. В отдельных случаях при анализах природных, производственных и сточных вод можно применять методики, помещенные в других литературных источниках [Л. 4—6, 10, И, 14, 15, 22, 23, 27—37].  [c.92]

МЕТОДЫ И ТЕХНИЧЕСКИЕ СРЕДСТВА КОНТРОЛЯ КАЧЕСТВА ВОДЫ, ПАРА, КОНДЕНСАТА И КОНЦЕНТРАЦИИ РАСТВОРОВ  [c.622]

Поверхностные пароохладители, включенные в рассечку, могут работать и на котловой воде. Существенным достоинством таких пароохладителей является отсутствие конденсата в паре за пароохладителем, вследствие чего устраняется температурная неравномерность, связанная с распределением двухфазной среды по змеевикам пароперегревателя. Недостатком таких пароохладителей является увеличение их размеров по сравнению с пароохладителями, работающими на питательной воде, из-за меньшего температурного напора. Кроме того, они требуют тщательного контроля качества перегретого пара за пароохладителем вследствие возможности проникновения охлаждающей котловой воды в паровую часть пароохладителя.  [c.395]

При закрытой схеме отпуска тепла теплоэлектроцентралью потери пара и конденсата сводятся к внутренним потерям, и теплоэлектроцентраль по относительной величине потери рабочей среды мало отличается от конденсационной электростанции. При установка пароводяных теплообменников (сетевых подогревателей), в которых давление воды должно быть выше давления греющего пара, нужно учитывать также возможность присоса сетевой воды в конденсатную систему этих подогревателей и, следовательно, в питательную систему котлов электростанции. Для предотвращения этого необходимо обеспечить высокую плотность сетевых подогревателей, иметь надежный контроль качества конденсата. В сетевых подогревателях горизонтального типа устраивают солевые отсеки, из которых отводят конденсат к фильтрам химического обессоливания.  [c.92]

В процессе промывки производился постоянный контроль качества пара до и после ЦВД, перед ЦСД, конденсата до и за БОУ, а также питательной воды. В паре и конденсате определялось содержание меди, железа, кремнекислоты, аммиака, гидразина, значение pH. В питательной воде и конденсате турбин через каждые 0,5—1 ч контролировалось содержание кислорода.  [c.101]


Автоматический контроль качества воды и пара производится по содержанию растворенных солей и кислорода в воде или конденсате пара электрическими методами.  [c.511]

Применение на электростанциях автоматических средств измерений (анализаторов жидкости) повышает надежность химического контроля за показателями качества питательной воды парогенераторов, пара и конденсата и процессами химического обессоливания добавочной воды и очистки конденсата турбин. Необходимые средства измерений для автоматического химического контроля за водным режимом электростанций и водоподготовительными установками рассмотрены в [95, 96].  [c.622]

Чрезвычайно важен контроль за параметрами теплоносителя, так как поддержание заданных параметров обеспечивает и качество теплоснабжения и надежную, безаварийную работу оборудования. Должен вестись систематический контроль за расходом, температурой и давлением пара и воды, поступающих от ТЭЦ в тепловые сети. Кроме того, контролируется величина подпитка в сети, качество сетевой воды и возвращаемого от потребителей конденсата. У потребителей контроль ведется за расходом теплоносителя, его температурой и давлением, кроме того, у промышленных паровых потребителей за качеством возвращаемого конденсата. В ряде случаев осуществляется контроль за температурой внутри отапливаемых помещений.  [c.199]

Методика быстрого определения концентрации железа. При контроле качества конденсатов, возвращаемых от производственных потребителей пара, необходимо быстрое определение концентрации в них железа. Оно в этих конденсатах присутствует обычно в форме взвеси частичек окислов, так как железо переходит в конденсат вследствие коррозионных процессов. В такой же преимущественно форме присутствует железо в отмывочных водах, образующихся после удаления отложений из теплосилового оборудования, т. е. после так называемых химических промывок. Во всех этих случаях требуется быстрое определение концентрации железа, чтобы решить, закончена ли отмывка оборудования, можно ли принимать возвращаемый конденсат. Здесь применяют экспрессный способ определения по пятну . Он заключается в следующем собирают прибор (рис. 12.15), поместив на пористую стеклянную пластинку кружок мембранного ультрафильтра № 4 или 5. Плотно закрепив этот кружок с помощью прокладочного кольца и прижимного устройства, присоединяют прибор к водоструйному вакуум-насосу через склянку. Затем вливают в цилиндрический сосуд прибора дистиллированную воду, включают водоструйный насос и, не давая опорожниться цилиндрическому сосуду, вливают в него всю порцию анализируемой воды. Объем этой порции определяют, сообразуясь с ожидаемой концентрацией железа таким образом, чтобы на фильтрующей мембране осело от 50 до 200 мкг железа. Так, если ожидают концентрацию железа порядка 100 мкг/л, то объем пробы должен быть не менее 500 мл. Закончив фильтрование, на что обычно тратится не более 3 — 5 мин, разбирают прибор, извлекают фильтрующую мембрану и сравнивают  [c.285]

То же по обслуживанию подводок труб и арматуры технологических установок, потребляющих пар, сжатый воздух, горячую воду Лаборанты по контролю качества конденсата  [c.95]

Для энергоблоков закритического давления разработаны методы очистки конденсата турбин и коррекционной обработки питательной воды. Разработаны методы глубокого умягчения и химического обессоливания добавочной воды, созданы точные методы контроля за качеством воды и пара.  [c.3]

Сетевые подогреватели должны быть плотными, т.е. не допускать попадания сетевой воды в паровое пространство подогревателей, а из него — в конденсатно-питательный тракт котла и затем в виде пара с агрессивными примесями в турбину. Хотя сетевая вода существенно чище, чем охлаждающая вода конденсаторов, повышенные температуры в подогревателях интенсифицируют коррозионные процессы, приводящие к появлению трещин и язв в стенках трубок и к прогрессирующим присосам сетевой воды. Дополнительным источником присосов являются неплотности вальцовочных соединений. Учитывая эти обстоятельства, постоянно производится контроль качества конденсата сетевых подогревателей.  [c.370]


Увеличение солесодержания питательной воды при увеличении потерь конденсата. Увеличивают продувку для поддержания нормального качества котловой воды. Если это не удается, снижают нагрузку. При этом на каждые 10 % превышения норм качества котловой воды нагрузка также должна снижаться на 10%. Обеспечивают работу парового котла с постоянной нагрузкой. Снижают уровень котловой воды. Усиливают контроль за качеством пара и котловой воды. При длительном ухудшении качества питательной воды проводят эксплуатационные наблюдения и устанавливают новый режим.  [c.297]

При оперативном контроле определяют температуру и давление обрабатываемой воды производительность отдельных аппаратов и установок в целом крепость и дозировку растворов реагентов, применяемых для обработки воды уровень воды в резервуарах качество воды па отдельных этапах ее обработки качество конденсата, питательной, котловой воды и пара парогенераторов, подпиточной и сетевой воды тепловых сетей, добавочной и циркуляционной воды охлаждающих систем, качество сточных вод.  [c.290]

Электропроводность водных растворов находится в сложной зависимости от концентрации раствора. На рис. 22-2-1 представлены зависимости удельной электропроводности к водных растворов некоторых веществ от их концентрации. Из этого графика видно, что однозначная зависимость между электропроводностью раствора и концентрацией имеет место лишь в том случае, если измерения электропроводности выполняются в области сравнительно низких концентраций. Концентрации растворенных веществ, которые приходится определять при контроле качества пара, конденсата, питательной и котловой воды, соответствуют начальным участкам приведенных на рис. 22-2-1 кривых, где удельная электропроводность непрерывно увеличивается с ростом концентраций.  [c.625]

Безэлектродные кондуктометры жидкости не могут быть использованы для контроля качества пара, конденсата турбин и питательной воды парогенераторов, а также других водных растворов, аналогичных по электропроводности конденсату пара.  [c.637]

Так, например, контроль качества питательной воды и вырабатываемого котлоагрегатом пара необходим для того, чтобы не допустить отложения солей в перегревателе, регулирующих клапанах и лопатках турбины, вызывающего пережог труб перегревателя и понижение мощности и экономичности турбоагрегата. Измерение содержания кислорода в конденсате и питательной воде позволяет предотвратить коррозию оборудования и т. д.  [c.52]

В качестве приборов непрерывного контроля солесодержания химически очищенной питательной и подпиточной воды, конденсата и пара применяются солемеры различной конструкции, принцип работы которых основан на изменении электрического сопротивления воды в зависимости от концентрации растворенных в ней солей.  [c.137]

Пример. Эффективность гидроксиламина и его солей в качестве поглотителей растворенного кислорода изучалась в условиях экспериментального парового котла при 25 атм и 228 °С. Во время испытания вода, питающая котел, насыщалась кислородом непрерывной аэрацией. Содержание растворенного кислорода (в виде Oj) в питающей воде было от 9 до 10 мг/л. Пар из котла конденсировался в теплообменнике, температура конденсата была 13 С. Затем конденсат проходил через камеру, в которой автоматически определяется содержание кислорода. Контроль- ное испытание проводилось вначале без поглотителя кислорода, до тех пор пока не достигался постоянный уровень содержания кислорода. Как только достигалась постоянная начальная концентрация кислорода, в систему вводили поглотитель кислорода и определяли изменение количества растворенного кислорода в конденсате.  [c.46]

Во всех случаях использования вторичного пара необходимо обеспечить возможность хотя бы периодически контролировать качество пара или его конденсата. Контроль необходим для обеспечения нормальной работы сепараторов и для предотвращения загрязнения питательной воды станции грязным паром.  [c.228]

Там, где это возможно по условиям технологии, снабжение теплом производственных и бытовых потребителей вместо пара переводят на горячую воду, циркулирующую в системе теплофикации. К, преимуществам такого теплоснабжения потребителей следует отнести то, что передача тепла от греющего пара воде в теплофикационных подогревателях осуществляется непосредственно на ТЭЦ. Это дает возможность силами станционного персонала осуществлять надлежащий контроль за количеством и качеством конденсата греющего пара теплофикационных подогревателей как в отношении уменьшения его потерь, так и в отношении сохранения надлежащего качества конденсата.  [c.12]

При повышенных требованиях к показателям качества питательной воды, пара и конденсата необходимо производить измерение малых значений электропроводности, не превышающих 5—6 мкСм-см . При контроле за истощением фильтров очистительных установок значение измеряемой электропроводности воды составляет 5-10"5—5-10 " См-см а при контроле концентрации растворов реагентов — от 10 до 0,7 См-см [96].  [c.623]

Помимо рН-метров, в небольших количествах разрабатываются и изготовляются, преимущественно для химических производств, гальванические и кондуктометрические концентратометры. Наибольшее распространение они получили на тепловых электростанциях для контроля качества конденсата и котловой воды. Эти приборы доведены в СССР до высокой степени совершенства и надежно вошли в практику эксплуатации теплосиловых установок, особенно работающих на паре высоких и сверхвысоких параметров, широко внедряемом в нашу энергетику. Кондуктометрические концентратометры для контроля качества воды уже в течение ряда лет выпускаются в СССР серийно. Кроме того, в небольших количествах отдельными заводами и организациями выпускаются кондуктометрические концентратометры для кислот, щелочей, растворов солей. Эти приборы имеют строго индивидуальные характеристики, определяемые теми конкретными задачами, для решения которых они предназначаются.  [c.366]


Химический контроль качества воды и пара в промышленных котельных основным своим назначением имеет обеспечение безаварийной и экономичной эксплуатации всех аппаратов и элементов тепловой схемы энергетической установки. Эта задача решается, с одной стороны, путем организации экспресс-контроля за всеми стадиями водонодготовки и за водно-химическим режимом котлов и теплообменных аппаратов, с другой стороны, путем углубленного периодического контроля за всеми типами вод от исходной до конденсата пара с целью фиксации фактического режима энергоустановки в целом. Круглосуточный химический экспресс-контроль служит дополнением к показаниям соответствующих приборов он должен быть основан на выполнении по возможности простых, приближенных определений. Объем необходимого химического контроля во многом зависит от особенностей технологической схемы, степени ее оснащенности приборами и автоматизации процессов.  [c.273]

Для надежной работы пароперегревателя прежде всего необходимо не допускать отложения солей на внутренних поверхностях змеевиков. Это достигается строгим соблюдением норм содержания солей в котловой воде и в насыщенном паре. Непрерывный контроль качества насыщенного пара позволяет своевременно выявить неполадки в работе сепарирующих устройств и принять меры для их ликвидации. Независимо от качества насыщенного пара не реже одного раза в год производится индивидуальная или общая иромывка змеевиков пароперегревателя. Индивидуальную промывку каждого змеевика можно производить только при наличии лючков в коллекторе пароперегревателя. В остальных случаях производится общая промывка пароперегревателя. Схема общей промывки показана на рис. 4-12. Общая промывка пароперегревателя производится в следующем порядке. Пароперегреватель заполняют конденсатом или питательной водой с температурой 80—90 °С и вы-  [c.99]

В лабораторных и стендовых условиях, а также непосредственно на ТЭС на протяжении ряда лет систематически проводился широкий ко м пл екс н а у чно - ис сл е дов ательских и наладочных работ с целью всестороннего изучения внутрикотловых физико-химических процессов, со-в ршенствования технологии обработки воды, упорядочения водных режимов котлов, а также разработки методов прецизионного аналитического и автоматизированного химконтроля. Результатом этих исследований явилось широкое внедрение на отечественных ТЭС комбинированных катионитных водоподготовительных установок, термических деаэраторов и коррекционного фосфатного режима котловой воды. Для обеспечения требуемой чистоты пара, котлы барабанного типа были оснащены паросепарирующими и продувочными устройствами, а также приборами для непрерывного контроля качества пара и конденсата.  [c.6]

Во время )пуска и наладки установки по гидразинной обработке питательной воды необходимо осуществлять химический контроль в расширенном объеме. Целесообразно через каждые 3—4 ч проверять качество питательной БОДЫ перед экономайзером на содержание кислорода, гидразина, окислов железа и меди 1 раз в смену определять содержание гидразина, окислов железа и меди, аммиака в котловой воде, насыщенном и перегретом паре, а также в конденсате турбин. При установившейся эксплуатации установки содержание кислорода, гидразина, окислов железа и меди достаточно контролировать 1 раз в сутки по всему тракту, а концентрацию кислорода и гидразина в питательной воде — 1 раз в смену. Крепость рабочего раствора гидразина определяют непосредственно перед пуском установки в работу. Содержание кислорода определяют визуально при помощи метиленового голубого, содержание гидразина — колориметрическим способом с применением парадиметила-минобензальдегида окислов меди — способом с применением диэтилдитиокарбомата свинца и с экстрагированием полученного медного комплекса хлороформом содержание аммиака определяют реактивом Неслера.  [c.88]

И на КЭС, II на ТЭЦ следует увеличивать объем автоматизированного контроля. В ряде случаев без такого контроля обойтись невозможно. Так. согласно расчету Ю. М. Кострикина прн щелочности котловой воды 0,1—0,5 мг-экв/кг, использовании в составе питательной воды 207о производственного конденсата с содержанием в нем всего 0,1% дихлорэтана (случай далеко не редкий) щелочной резерв котловой воды будет исчерпан через 2—10 мни, после чего начнутся интенсивные коррозионные процессы. В данном случае требуется или применение упомянутого выше прибора ВТИ для контроля потенциально кислых примесей, или по крайней мере установка на потоках составляющих питательной воды стационарных кондуктометров и рН-метров, работающих как автоматы-сигнализаторы. Речь идет также и о конденсате турбин и различных подогревателей, тем более что присосы гораздо чувствительнее определяются кондукто-метрически, чем по увеличению жесткости. На ТЭЦ с большим промышленным отбором пара и значительной долей в балансе добавочной воды необходима также установка приборов хотя бы в качестве индикаторов, на потоках частично обессоленной и обессоленной нлн химически очищенной воды. Это позволит в условиях эксплуатации многих десятков фильтров ХВО избежать тяжелых последствий от случающегося попадания в обрабатываемую поду высококопцент-рированных регенерационных растворов кислоты, щелочи, соли.  [c.130]

Как известно, химически чистая вода характеризуется высоким сопротивлением для прохождения электрического тока. С повышением концентрации веществ, растворенных в воде, электрическое сопротивление ее уменьшается, а электрспроводность увеличивается. На этой зависимости и основан принцип работы электрических солемеров. Определение солесодержания с применением электрического солемера производится по показаниям гальванометра с помощью предварительно построенной градуировочной кривой. Метод электропроводности для контроля качества пара является быстрым, точным и пригодным для регистрации на приборе. Основным недостатком этого метода является увеличение электропроводности пробы конденсата пара за счет присутствующих в пробе газов СОг и ЫНз, которые при конденсации проб растворяются, образуя угольную кислоту и гидроокись аммония, продукты электролитической диссоциации которых увеличивают электропроводность конденсата пара, завышая значение солесодержания в нем. Для того чтобы устранить это искажение, при.меняются солемеры, в которых сочетается предварительная дегазация пробы с ее упариванием в солеконденсаторе. При упаривании пробы ее солесодержание повышается в несколько раз по сравнению с действительным солесодержанием, в результате чего резко уменьшается влияние аммиака и углекислоты на точность показаний солемера.  [c.190]

При контроле качества конденсатов, возвращаемых от производственных потребителей пара, необходимо быстрое определение концентрации в них железа. Оно в этих конденсатах присутствует обычно в форме взвеси частичек окислсж, так как железо переходит в конденсат вследствие коррозионных процессов. В такой же преимущественно рме присутствует железо в отмывочных водах, возникающих после удаления отложений из теплосиловогр оборудования, т. е. после так называемых химических промывок. Во всех этих случаях требуется быстрое определение концентрации железа, чтобы решить, закончена ли отмывка оборудования, можно ли принимать возвращаемый конденсат. Здесь применяют экспрессный способ определения по пятну . Он заключается в следующем собирают прибор (рис. 13-19), поместив на пористую стеклянную пластинку кружок мембранного ультрафильтра № 4 или 5. Плотно закрепив кружок мембранного ультрафильтра с помощью прокладочного кольца и прижимного устройства, присоединяют прибор к водоструйному вакуум-насосу через склянку. Затем вливают в цилиндрический сосуд прибора  [c.310]


Эксплуатационный химконтроль блока вне котла сводится в основном к автоматическому контролю ио солемеру с дегазацией и обога-шением за плотностью конденсатора, качеством добавочной питательной воды (конденсат, химически обессоленная вода), а при наличии испарителя — за качеством вторичного пара испарителя. При наличии надежно действующих кислородомеров эксплуатационный контроль за водным режимом блока может быть дополнен двумя кисло-родомерами (до и после деаэратора). Периодический химконтроль блока по всему тракту используется эпизодически в случае неисправности приборов, а при текущем контроле периодически проверяется качество воды в баках.  [c.25]

На современном этапе развития теплоэнергетики требуется непрерывный шрецизионный контроль за рядом показателей качества пара, питательной воды котлов и ее составляющих, за процессами химического обессоливания добавочной питательной оды и конденсата тур-би н, а также с целью корректирования 1В01ДНОГ0 режима. Оперативный контроль возможен с помощью автоматов-анализаторов, правильность действия которых периодиче-С Ки проверяется с помощью лабораторных приборов.  [c.150]

Монтаж автоматики на реконструированном котле производился работниками комбината (3 человека в течение 14 дней), причем потребовались перерасчет и изготовление новых мерных диафрагм, перестановка приборов на новое место, пересчет шкалы расходомеров. Принципиальные схемы автоматики регулирования и безопасности оставлены без изменения. Общая щелочность питательной воды после смешения химочищенной воды с конденсатом составляет 1,5 мг-экв1л. Остаточная жесткость воды не превышает 30 мгк-экв1л. В котельной установлен деаэратор атмосферного типа, обеспечивающий остаточное содержание кислорода в питательной воде в пределах 0,1 мг/л. Для проведения теплохимических испытаний котла была смонтирована схема контроля (рис. 7-5). Качество пара определялось в четырех точках из правого и левого циклонов, из барабана котла и из общего паросборника. Проверялись производительность каждого циклона и уровни воды как во внутренних, так и во внешних циклонах. В связи с тем, что колебания уровней в циклонах могли достигать больших значений, замер уровней воды в них проводился с помощью дифманометров, залитых ртутью. Щелочность котловой воды определялась в двух точках в чистом отсеке и в солевом (после смешения из обоих циклонов). Пробы пара охлаждались в многоточечном холодильнике. Проба котловой воды соленых отсеков отбиралась из эксплуатационного холодильника проба котловой воды чистого отсека отбиралась из водоуказательного стекла барабана (с учетом поправки на выпар). Уровни воды в барабане поддерживаются на определенной отметке автоматом питания. Уровни воды в циклонах устанавливаются в результате соотношения сопротивления пароперепускных линий от циклонов и барабана к паросборнику. Увеличение сопротивления линий между  [c.204]

Основные отличия ТУ турбины Т-250/300-23,5-3 (рис. 3.85, табл. 3.31) от рассмотренных выше обусловлены жесткими требованиями к водному режиму блоков насверхкритические параметры пара. Для того чтобы исключить ухудшение качества конденсата вследствие протечек сетевой воды в паровое пространство подогревателей, предусмотрен непрерывный контроль за его качеством. При ухудшении качества конденсата он расхолаживается в теплообменнике 7, сбрасывается в конденсатор и вместе с основным конденсатом турбины проходит очистку в БОУ. Назначение доохладителя ДК — обеспечить температуру конденсата, допускаемую ионообменными материалами, используемыми в БОУ.  [c.337]

Кондуктометры нашли широкое применение (при -контроле за водным режимом электростанции и водоподготовки. Пользуясь ими, находят величину удельной электропроводности конденсата пара, конденсата турбины, питательной и обессоленной воды. Измерением пров одимо-сти определяют (концентрацию растворов реагентов, применяемых при водообработке, а также качество фильтрата после ионитных фильтров.  [c.154]


Смотреть страницы где упоминается термин Контроль качества воды, пара и конденсата : [c.191]    [c.22]    [c.150]    [c.101]    [c.285]    [c.123]   
Теплотехнические измерения и приборы (1978) -- [ c.622 , c.646 ]



ПОИСК



Вода Пары —

Вода для контроль качества

Качество воды

Качество конденсата

Качество пара

Конденсат

Конденсат, контроль качеств

Контроль качества воды для

Контроль качества воды конденсата

Контроль качества пара и воды

МЕТОДЫ И ТЕХНИЧЕСКИЕ СРЕДСТВА КОНТРОЛЯ КАЧЕСТВА ВОДЫ, ПАРА, КОНДЕНСАТА И КОНЦЕНТРАЦИИ РАСТВОРОВ Глава двадцать вторая. Методы и технические средства контроля качества воды, пара, конденсата и концентрации растворов

Пары воды



© 2025 Mash-xxl.info Реклама на сайте