Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоскость Лобачевского Пуанкар

Так как это симметрическая, К-билинейная и положительно определенная форма, мы, таким образом, определили риманову метрику ( , ), которая называется гиперболической метрикой. Полуплоскость Н, рассматриваемая с гиперболической метрикой, обычно называется верхней полуплоскостью Пуанкаре. Рассматриваемая как абстрактное риманово многообразие, она иногда называется плоскостью Лобачевского, в честь великого русского ученого, открывшего возможность существования неевклидовой геометрии. Так как гиперболическая метрика отличается от евклидовой метрики Ке(и +гг,)(и — гг ) лишь на скалярный множитель (1т г) , гиперболические углы совпадают с евклидовыми углами.  [c.215]


В модели Пуанкаре плоскость Лобачевского Р отождествляется с внутренностью единичного круга z комплексной плоскости = z , причем метрика на задается формулой  [c.118]

Биллиарды на плоскости Лобачевского, имеющие квадратичный по скорости интеграл, впервые описаны А. М. Абдрахмановым с использованием модели Пуанкаре (см. задачу 4 гл. 4).  [c.141]

Можно рассмотреть также законы преломления света на границе движущихся сред. Так как в задачах преломления скорость волны приходится брать меньше единицы, то для расчета они будут не просты можно добиться упрощения, если ввести в рассмотрение идеальную область плоскости Лобачевского, лежащую за абсолютом и отвечающую, по Пуанкаре, однополостному гиперболоиду. В этой области волна s может быть представлена всего oflHoi i точкой, отвечающей пормалп к волпе в системе, где волна кажется стоячей.  [c.336]

Д. Компактные факторы. В дальнейшем часто будет целесооб разно пользоваться другой моделью плоскости Лобачевского. Отображе ние / Н—> С, 2 переводит верхнюю полуплоскость Пуанкаре Н н  [c.220]

Эргодическая теория геодезических потоков на многообразиях постоянной отрицательной кривизны может быть достаточ-то глубоко исследована с помощью методов теории унитарных лредставлений групп Ли. Впервые идея об алгебраической конструкции таких геодезических потоков появилась в работе И. М. Гельфанда и С. В. Фомина (см. [20]), где было получено много важных результатов. Динамические системы, к которым. применим подход Гельфанда—Фомина, иногда называют динамическими системами алгебраического происхождения. Многие относящиеся к ним результаты описаны в обзоре [22]. Здесь мы остановимся только на геодезических потоках на многообразиях постоянной отрицательной кривизны. Мы будем пользоваться моделью Пуанкаре плоскости Лобачевского на верхней комплексной полуплоскости Я= z= (x+iy) г/>0 . Линия г/=0 называется абсолютом (и обозначается Я(оо)), а ее точ-зси — бесконечно удаленными. Прямыми в Я служат полуокружности с центрами на aб oJIIЮтe или лучи, ортогональные J абсолюту. Риманова метрика кривизны — К задается в виде скалярного произведения <, >л в точке z= x+iy)6H равенст-k  [c.164]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]



Смотреть страницы где упоминается термин Плоскость Лобачевского Пуанкар : [c.329]    [c.279]    [c.70]    [c.28]    [c.233]   
Эргодические проблемы классической механики Регулярная и хаотическая динамика Том11 (1999) -- [ c.169 ]



ПОИСК



Лобачевский

Пуанкаре



© 2025 Mash-xxl.info Реклама на сайте