Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Субструктура

За последнее время уделяется большое внимание влиянию субструктуры на коррозию металлов. Дефекты структуры, выходящие на поверхность металла, обладают повышенной реакционной способностью и по ним идет в первую очередь растворение металла. В зависимости от плотности активных мест, обусловленных на различны верн х " выходом дислокаций на поверхность,  [c.327]

Отметим, что при построении различных моделей разрушения и формулировке критериев хрупкого разрушения во многих случаях исходят в общем из априорного постулирования преобладающего значения того или иного процесса. Так, например, в работах [149, 150] предполагалось, что критическое напряжение хрупкого разрушения 5с в поликристаллических материалах с различной структурой при разных температурно-деформационных условиях нагружения определяется только одним условием — переходом зародышевых микротрещин к гриффитсов-скому (нестабильному) росту. Условия распространения микротрещины как через границы зерен, так и через любые другие барьеры, возникающие при эволюции структуры в результате пластического течения, игнорировались. При этом сделана попытка объяснить увеличение S с ростом пластической деформации гР уменьшением длины зарождающихся в процессе деформирования микротрещин за счет уменьшения эффективного диаметра зерна [149, 150]. Такая модель не позволила авторам удовлетворительно описать зависимость S eP), что привело их к выводу о существенном влиянии деформационной субструктуры на исследуемые параметры. Следует отметить, что, рассматривая в качестве контролирующего разрушения только процесс страгивания микротрещины и не учитывая условия ее распространения, практически невозможно предложить разумную концепцию влияния пластической деформации на критическое напряжение S .  [c.61]


Таким образом, при температуре Т > Tq условия зарождения, страгивания и распространения микротрещины скола в принципе уже не совпадают. Микротрещины длиной Р при сг 5о, нестабильно распространяясь до некоторых эффективных барьеров, роль которых выполняют либо микронапряжения (напряжения II рода), либо границы субструктуры, приводят к макроразрушению, если напряжение о достигло уровня Ор, соответствующего прорыву этих барьеров (рис. 2.6, а, точка  [c.64]

Рассмотренная выше модель процесса хрупкого разрушения поликристаллического ОЦК металла предполагает непрерывную генерацию острых (раскрытие равно параметру решетки) микротрещин, начиная с выполнения условия (2.7), и их нестабильный рост при Oi > 5о, по крайней мере, до ближайшего препятствия, способного затормозить микротрещину. Возникновение в ходе пластического деформирования микронапряжений и создание деформационной субструктуры, играющих роль барьеров для микротрещин, вызывают увеличение напряжения Ор.  [c.71]

З.2. ПРОГНОЗИРОВАНИЕ ВЛИЯНИЯ ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ. ПРИВОДЯЩЕГО К ОБРАЗОВАНИЮ СУБСТРУКТУРЫ В МАТЕРИАЛЕ, НА S  [c.77]

Для процесса возникновения и эволюции ячеистой дислокационной субструктуры характерны следующие закономерности [211, 242, 320, 357]. Образование ячеистой структуры происходит, начиная с некоторой критической деформации. Для описания ячеистой структуры обычно используют такие параметры средний размер ячейки, распределение ячеек по размерам, ширина стенок ячейки, разориентация соседних ячеек, плотность дислокаций в стенках ячеек и в объеме. Все указанные величины изменяются с ростом пластической деформации. С повышением пластической деформации еР диаметр ячеек d уменьшается, пока не достигает некоторого предельного значения — обычно 0,25—3 мкм. Все остальные перечисленные параметры ячеистой структуры, интенсивно изменяясь с ростом на начальных этапах деформирования ячеек, при дальнейшем деформировании стабилизируются и приближаются к некоторым характерным значениям стабилизируются плотность дислокаций в границах ячеек, толщина стенок ячеек и дисперсия функции их распределения по размерам. Поэтому увеличение напряжений, необходимых для распространения микротрещин через границы ячеистой структуры, по всей видимости, в первую очередь обусловлено уменьшением размера ячеек. В изложенной ниже модели принято, что плотность дислокаций в стенках ячеек постоянна, а увеличение общей плотности дислокаций, обусловленное пластической деформацией, приводит к образованию новых границ и тем самым к уменьшению диаметра ячеек.  [c.78]

Барьерная роль границ ячеек (здесь и далее под ячейками будем понимать характерный регулярный элемент деформационной субструктуры) может быть сформулирована в терминах  [c.78]


Для определения влияния пластического деформирования на 5с необходимо определить зависимость диаметра d от пластической деформации. Для этого рассмотрим регулярную субструктуру со средним диаметром ячейки d. Предполагая, что все дислокации находятся в стенках ячеек, для средней плотности дислокаций будем иметь  [c.79]

Наиболее просто с, с, Лд определить по результатам экспериментов по статическому разрыву образцов при различных температурах. Заметим, что использование зависимости (2.22) при X < ио равносильно предположению, что увеличение 5с, происходящее как до образования регулярной субструктуры, так и после за счет других структурных изменений, подчиняется одним и тем же закономерностям.  [c.81]

Представленные результаты иллюстрируют возможность остановки микротрещин скола границами элементов деформационной субструктуры. Однако указанные микротрещины, обнаруженные вблизи поверхности разрушения, могут быть микротрещинами, сопутствующими тем, которые привели к разрушению образца, т. е. микротрещинами, зародившимися и развивающимися только при Ol = 5 .  [c.88]

Несмотря на то что изложенные выше теоретические представления о влиянии деформационной субструктуры на S позволяют достаточно хорошо описать зависимость S от х, остается открытым вопрос о механизме, приводящем к повышению 5с при малых пластических деформациях. Дело в том, что при незначительной степени пластического деформирования (х < хо) какая-либо деформационная субструктура не- успевает сформироваться (наблюдается хаотическое распределение дислокаций). Поэтому, исходя из изложенных представлений о влиянии суб структуры. S должно быть неизменным при деформировании материала до х хо. Указанный вывод противоречит экспериментальным данным, показывающим, что S монотонно увеличивается с ростом пластической деформации. Следовательно, помимо рассмотренного выше механизма увеличения S с ростом X существует, по крайней мере, еще один механизм, приводящий к аналогичному результату. По нашему мнению, при отсутствии деформационной субструктуры увеличение S с ростом пластической деформации связано с наличием микронапряжений (напряжений I рода).  [c.91]

В СЛУЧАЕ ОТСУТСТВИЯ ДЕФОРМАЦИОННОЙ СУБСТРУКТУРЫ  [c.91]

Необходимо также отметить, что микронапряжения следует учитывать только в случае хаотического распределения дислокаций. При формировании какой-либо фрагментированной субструктуры плотность дислокаций внутри фрагмента (ячейки) падает, а на его границах растет. Это обстоятельство приводит к формированию микронапряжений на более высоком масштабном уровне, так как источником микронапряжений теперь выступают не отдельные дислокации, а границы фрагментов. В данном случае полупериод колебаний микронапряжений ао  [c.95]

Рассмотрим параметры L K и бек, входящие в формулу (2.8). Как указывалось выще, в процессе деформирования происходит образование фрагментированной субструктуры материала. Вполне целесообразно принять, что максимальная длина дислокационного скопления L K равна диаметру фрагмента. Поэтому, учитывая температурную зависимость геометрии скопления, характеризующуюся параметром бек, зависимость (2.8) с учетом (2.13) преобразуем следующим образом  [c.96]

Отметим, что зависимость (2.39) строго можно использовать только при X хо, т. е. после образования деформационной субструктуры. При я С ио уменьшение длины линий скольжения связано в основном с вытяжкой зерна, а также с наличием леса дислокаций. Предполагая, что характер влияния пластической деформации на уменьшение длины линий скольжения при X < хо такой же, как и при х хо, зависимость (2.39) будем  [c.96]

После страгивания развивающаяся микротрещина может быть остановлена барьерами различной природы при небольших пластических деформациях — микронапряжением, а при больших — границами деформационной субструктуры. Для зарождения хрупкого макроразрушения нестабильно развивающаяся микротрещина должна преодолеть вышеназванные барьеры.  [c.146]

Исследования барьерной роли микронапряжений и составляющих деформационной субструктуры позволили установить, что с ростом пластической деформации эффективность указанных барьеров по остановке трещин увеличивается. Используя взаимосвязь критического напряжения хрупкого разрушения S с сопротивлением материала развитию микротрещин, т. е. с барьерами различной природы, предложен подход к аналитическому прогнозированию S в статически и циклически деформированном материале. Оказалось, что S независимо от истории нагружения монотонно увеличивается с ростом накопленной деформации, мерой которой может служить параметр Одквиста.  [c.147]


В работах [232, 234, 356] показано, что для некоторых материалов характеристики вязкости разрушения при циклическом нагружении могут существенно отличаться от характеристик статической трещиностойкости. Циклическое деформирование металла у вершины трещины приводит к нестабильному (скачкообразному) ее развитию при КИН, меньших статической вязкости разрушения Ки. В настоящее время феноменология такого явления достаточно хорошо разработана и описана в работах [29, 197, 232, 234, 267, 356]. Тем не менее физическая природа скачков усталостной трещины изучена недостаточно. Попытаемся дать физическую интерпретацию этого явления. Выше (см. подраздел 2.3.2) была представлена модель, описывающая зарождение усталостного разрушения в масштабе зерна. Разрушение представлялось как многостадийный процесс, включающий зарождение микротрещин по границам и в теле фрагментированной субструктуры, возникающей при циклическом деформировании, стабильный рост микротрещин за счет стока дислокаций в их вершины, образование разрушения в пределах зерна при нестабильном росте микротрещин. Ограничение мае-штаба разрушения при нестабильном росте микротрещин размером зерна возникает в случае их торможения границами зерен или стенками фрагментированной структуры, т. е. при = Oi < 5с(ху), где X/ — накопленная деформация к моменту страгивания микротрещин. Если сгтах 5с(ху), то разрушение может распространяться в масштабе, большем чем размер зерна.  [c.222]

Рис. 13. Структура металла а — схема строения зерна металла й — зернистая структура металла е — субструктура зерна Рис. 13. <a href="/info/64363">Структура металла</a> а — схема <a href="/info/413402">строения зерна</a> металла й — зернистая <a href="/info/64363">структура металла</a> е — субструктура зерна
Под первичной структурой (субструктурой) понимают структуру металла, образующуюся в процессе первичной кристаллизации, т. е. при переходе расплавленного металла из жидкого в твердое состояние.  [c.444]

В ЗТВ в процессе нагрева и охлаждения при сварке, а также в шве при охлаждении получают развитие целый ряд фазовых структурных превращений. Под фазовыми превращениями (переходами I рода) понимают превращения с образованием новых фаз, отличающихся от исходных атомно-кристаллическим строением, часто составом, свойствами, и разграниченных с ними поверхностями раздела (межфазными границами). При образовании новой фазы в ее объеме меняется свободная энергия, скачкообразно изменяются энтропия, теплосодержание и в момент превращения теплоемкость стремится к бесконечности. В связи с этим фазовое превращение сопровождается выделением или. поглощением теплоты. При структурных превращениях (переходах FI рода) происходит перераспределение дефектов кристаллической решетки, легирующих элементов и примесей и изменение субструктуры существующих фаз. Структурные превращения сопровождаются плавным изменением свободной энергии, энтропии и теплосодержания, скачкообразным — теплоемкости, и не сопровождаются выделением теплоты.  [c.491]

Рассмотрим принципиальную возможность моделирования влияния пластического деформирования на 5с, исходя из увеличения сопротивления распространению микротрещины в результате эволюции структуры материала в процессе нагружения. Можно предположить, по крайней мере, две возможные причины увеличения сопротивления распространению трещин скола в деформированной структуре. Первая — это образование внут-ризеренной субструктуры, играющей роль дополнительных барьеров (помимо границ зерен), способных тормозить мнкро-трещину. Наиболее общим для широкого класса металлов структурным процессом, происходящим в материале при пластическом деформировании, является возникновение ячеистой, а затем с ростом деформации — фрагментированной структуры [211, 242, 255, 307, 320, 337, 344, 348, 357, 358]. Второй возможный механизм дополнительного торможения микротрещин — увеличение разориеитировок границ, исходно существующих взернз структурных составляющих (например, перлитных колоний). Первый механизм, по всей вероятности, может действовать в чистых ОЦК металлах с простой однофазной структурой. Второй, как можно предполагать,— в конструкционных сталях.  [c.77]

Следует отметить, что проведенный расчетно-экспериментальный анализ зависимости 5с(х) справедлив при достаточно малых усталостных микротрещинах, когда их размеры порядка ячейки субструктуры материала. При больших х и соответственно значительных усталостных повреждениях, размер которых составляет порядка нескольких диаметров зерен, зависимость 5с (х) может стать убывающей. Действительно, уменьшение 5с с увеличением х наблюдается при испытании образцов № 11, 12 (см. табл. 2.1, 2.2), где предварительная повреждаемость материала была значительной. Высокий уровень повреждаемости в образцах № 11, 12 выражался в большом количестве усталостных микротрещин, возникающих в достаточно представительном объеме материала, выявленных фрактогра-фическими исследованиями (подробное описание фрактур см. ниже).  [c.82]

Р1зложенные здесь модельные представления о влиянии деформации на критическое напряжение хрупкого разрушения S подтверждаются результатами фрактографических и металлографических исследований. Возникновение деформационной субструктуры, обусловленное пластическим деформированием, приводит, как предполагалось, к появлению дополнительных барьеров для микротрещин скола. Тогда фрактуры поверхностей хрупкого разрушения образцов с различной степенью пластической деформации х, предшествующей разрыву, прежде всего должны различаться величиной фасеток скола с ростом х средний размер фасеток должен уменьшаться. Такая закономерность действительно прослеживается как для образцов, испытавших перед разрушением статическую деформацию растяжением, так и для образцов, которые испытывали по программе Циклический наклеп и растяжение .  [c.83]


В то же время следует отметить, что зависимость 5с(и), полученная на основании концепции о барьерных свойствах границ деформационной субструктуры, хорошо описывает экспериментальные данные даже при х < ио (см. подподраздел 2.1.3.2). Поэтому целесообразно использовать зависимость (2.22) при любом уровне пластического деформирования, несмотря на то, что при X < хо это физически необоснованно.  [c.95]

Реализация хрупкого разрушения в ОЦК металлах происходит при выполнении трех условий зарождения острых микротрещин (притупление равно параметру решетки), их страгива-ния и распространения микротрещин скола через различные эффективные барьеры — микронапряжения или границы деформационной субструктуры материала.  [c.146]

Процесс малоциклового усталостщ)го разрушения ОЦК металлов может быть подразделен на три этапа множественное зарождение микротрещин на самых ранних стадиях циклического упругопластического деформирования, стабильное подрастание микротрещин за счет эмиссии и стока дислокаций в их вершины и, наконец, нестабильное развитие микротрещин до ближайших эффективных барьеров, которыми могут являться микронапряжения или границы деформационной субструктуры. Исходя из указанной схематизации усталостного разрушения ясно, что долговечность до зарождения макроразрушения определяется двумя параметрами НДС неупругой деформацией (точнее, размахом неупругой деформации в цикле) и максимальными напряжениями в цикле. Первый параметр определяет скорость стабильного роста микротрещины, а второй — ее критическую длину.  [c.148]

Использованные модельные представления в основных чертах не противоречат отмеченным закономерностям. Так, основная особенность строения усталостных изломов — наличие вторичных микротрещин, — как видно, вытекает из принятых представлений (см. подраздел 2.3.2, рис. 2.29). Анализ НДС у вершины трещины показал, что с ростом АК значительно увеличивается размах деформаций и весьма незначительно — максимальные напряжения Отах- Такая ситуация приводит к увеличению критической длины микротрещины If с повышением А/С [см. (2.105)] и, следовательно, к уменьшению области нестабильного роста микротрещин — зоны микроскола, равной d—If (d —диаметр фрагмента субструктуры). В пределе при If = d область микроскола становится равной нулю, что может быть интерпретировано как переход к чисто усталостному излому.  [c.221]

Использование ранее сформулированных представлений о влиянии деформационной субструктуры материала на критическое напряжение хрупкого разрушения S позволило дать физическую интерпретацию явления нестабильного (скачкообразного) роста усталостной трещины и соответственно разработат4> метод прогнозирования параметра Ки- Установлено, что скачкообразный рост усталостной трещины наступает в том случае, если микротрещины, нестабильно развивающиеся у ее вершины, не тормозятся деформационной субструктурой материала.  [c.265]

Электронный микроскоп позволяет подробно изучать тонкую структуру (субструктуру) металла. Одно из наиболее важных достижений электронной микроскопии — возможность прямого наблюдения дефектов кристаллической структуры. На рис. 3, в показана микроструктура, полученная в электронном MHKpo Koife.  [c.13]

Кая< ,ое зерно металла состоит из отдельных субзерен, образующих так называемую субструктуру (рнс. 13, б). Различные об ьемы металла обычно разориентированы один относительно другого на величину от несколысих долей до единиц градуса — субструктура (м а о- к с р е д н е у г л о в ы е границ ы) или до неско/1ьких  [c.25]

Изучение субструктуры имеет большое значение, гак как размеры и разориентирование субзерен оказывают влияние на многие свойства металлов.  [c.25]

Кроме того, изменяются размеры и форма карбидных частиц она приближается к сфероидальной. Наряду с карбидным превраш,ением при этих температурах отпуска происходит изменение субструктуры— полигонизация а-фазы и релаксация макро- и микронанряжений, возникающих при закалке в процессе мартенситного превраще [ия. Образующуюся после отпуска при 350—400 °С структуру обычно называют трооститом отпуска.  [c.187]

Коагуляция карбидов четвертое превраи ение при отпуске). (500—680 °С). Повышение температуры отпуска сверх 400 -500 С в углеродистых и многих низко- и среднелегированных сталях не вызывает изменения фазового состава. Однако с повышением температуры изменяется микроструктура происходит коагуляция и сфероидизация карбидов и изменяется субструктура а-фазы (рис. 121, а—в).  [c.187]

В результате коагуляции размер частиц карбидов становится - 1 мкм, тогда как после отпуска при 400—450 °С (троостит отпуска) их величина 0,3 мкм (рис. 121, в). При температурах, близких к и точке Ai, образуется еще более грубая феррито-карбидпая структура (диаметр карбидных частиц 3 мкм), называемая зернистым перлитом (правильнее перлитом с зернистым цементитом). При этих температурах происходит рекристаллизация феррита и во многом устраняется его субструктура.  [c.187]

Если протяженность зоны концентрационного переохлаждения 6з достаточно велика и переохлаждение больше некоторой критической величины, при которой еще происходит образование ячеистой структуры, то на всех ячейках начинают образовываться ветви и они превращаются в дендриты. Условием образования дендритной первлчной структуры (рис. 12.12, в) будет Фз<.АСо/к. Дендриты сплавов имеют субструктуру, напоминающую ячеистую. Образование такой структуры на дендритах, растущих в расплаве, содержащем примеси, связано с тем, что растущая ветвь дендрита отталкивает атомы примеси так же, как и плоский фронт кристаллизации. Скопление примесей и концентрационное переохлаждение приводят к образованию ячеек на ветвях дендритов. С увеличением переохлаждения размеры дендритов и их разветвленность возрастают.  [c.445]

Методом просречивдющей электронной микроскопии проанализирована эволюция субструктуры в сталях. Выполнен количественный статистический ацдлиз параметров субструктуры, установлены закономерности изменения характера фрагментирования структурных составляющих сталей, скалярной, избыточной и суммарной плотности дислокации э них, плотности двойников, кривизны кручения решетки.  [c.66]

Данные статистического анализа параметров субструктуры позволили теоретически рассчитать кривые деформационного упрочнения сталей с учетам вкладов, обусловленных взаимодейстписм дислокаций с различными барьерами.  [c.66]

Пространственно-временная упорядоченность субструктуры и связанных с ней уирут онластическнх свойств нарушенных слоев исчезает после кратковременного отжига кристаллов  [c.90]


Смотреть страницы где упоминается термин Субструктура : [c.64]    [c.77]    [c.87]    [c.96]    [c.138]    [c.253]    [c.56]    [c.171]    [c.172]    [c.337]    [c.90]   
Справочник по металлографическому тралению (1979) -- [ c.29 , c.77 , c.191 , c.210 , c.219 , c.228 , c.229 , c.263 , c.286 ]

Материаловедение Учебник для высших технических учебных заведений (1990) -- [ c.23 ]

Ползучесть кристаллов (1988) -- [ c.0 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.39 ]



ПОИСК



Анализ субструктуры в отожженных и слабо деформированных материалах

Влияние субструктуры и термической обработки

Выявление субструктуры кадмия

Движение элементов субструктуры

Изменение структуры коксов при прокаливании в зависимости от субструктуры

Костюкова, Ю. В. Баранов. Влияние характера субструктуры в поверхностных слоях на процесс полигонизации монокристаллов вольфрама

Микроструктура и субструктура сплавов, закаленных на мартенсит

Модели неустойчивости субструктур

Персвощиков В. А., Скупое В. Д ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ РЕГУЛЯРНОСТЬ СУБСТРУКТУРЫ НАРУШЕННЫХ СЛОЕВ В КРЕМНИИ ПОСЛЕ АБРАЗИВНОЙ ОБРАБОТКИ

Поверхность металла выявление субструктуры

Полосчатая субструктура

Полосчатая субструктура Полосчатость

Представление о субструктуре

Прогнозирование влияния пластического деформирования, приводящего к образованию субструктуры в материале, Прогнозирование влияния пластического деформирования при квазистатическом нагружении на S в случае отсутствия деформационной субструктуры в материале

Структура (субструктура)

Субструктура превращения

Тарасенко Ю.П., Романов И.Г., Подлеснов А.Е Влияние парциального давления азота на субструктуру и трибологические свойства ионно-плазменных покрытий нитрида титана

Фазовые переходы, организация и самоорганизация субструктур дефекТермодинамические аспекты пластической деформации



© 2025 Mash-xxl.info Реклама на сайте