Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функции Бесселя Якоби

Функции Бесселя, полиномы Лежандра, Чебышева, Якоби, Эрмита, Лагерра представляют коэфициенты разложений по степеням z (или тригонометрических разложений) некоторых функций F(x,z), называемых производящими функциями.  [c.142]

В задачах небесной механики и динамики космического полета весьма часто приходится пользоваться специальными функциями. К их числу относятся эллиптические функции Якоби, функции Бесселя, сферические функции, гипергеометрические функции и т. д.  [c.359]


Функции Бесселя нашли применение в разложениях координат невозмущенного кеплеровского движения (см. ч. II, гл. 3), в теории движения ИСЗ в сопротивляющейся среде (см. ч. VI, гл. 2). Сферические функции и, в частности, полиномы Лежандра используются в теории притяжения (см. ч. VI, гл. 1). Большие удобства дает применение гипергеометрической функции при разложении возмущающей функции в классических задачах небесной механики (см. гл. 6). Через эллиптические функции Якоби выражается решение задачи о движении ИСЗ с учетом возмущений от фигуры Земли [19].  [c.359]

Метод Коши. Коши, как и Якоби и Ганзен, искал сначала разложение по эксцентрическим аномалиям, чтобы из него вывести, пользуясь функциями Бесселя, разложение по средним аномалиям. Мы не будем снова рассматривать вопрос о переходе от одного разложения к другому, а рассмотрим способ получения разложения по эксцентрическим аномалиям.  [c.436]

Первые четыре главы книги посвящены общим уравнениям движения тел, представляющих изолированную систему, известным интегралам, основным формулам эллиптического движения и разложению различных функций в гипергеометрические ряды и по функциям Бесселя. В гл. 5 достаточно подробно излагаются уравнения Лагранжа для оскулирующих элементов, чтобы читатель мог ознакомиться с основными процессами перехода от эллиптической орбиты к возмущениям планет. В гл. 6 рассматриваются различные классы неравенств —вековые, короткопериодические и долгопериодические. Гл. 7 посвящена разложению в ряд возмущающей функции, сначала в теории Луны, а затем в теории движения планет. В гл. 8 —о канонических уравнениях — шаг за шагом излагаются различные теоретические положения и приводятся простые примеры. В гл. 9 подробно рассматривается решение уравнений эллиптического движения при помощи метода Гамильтона — Якоби. В следующих двух главах излагаются элементы теории контактных преобразований. Гл. 12 посвящена теории Луны Делонэ в ней подробно описывается основная операция и дается практический метод получения решения п желаемой форме. В следующих двух главах рассматриваются вековые  [c.7]

Якоби [1849] получил разложения в виде нормальных решений для функций Бесселя первого порядка при больших значениях аргумента. Аналогичные результаты для уравнения Эйри получил Стокс [1857]. Хорн [1903] дал обоснование асимптотическим решениям в виде произведения экспонент и рядов по убывающим степеням х.  [c.333]


Краевые задачи с особыми краевыми условиями, функции Бесселя и Лежандра, специальные полиномы Чебышева, Якоби, Эрмита, Лагерра (см. стр. 136 — 142) могут служить для построения замкнутых ортогональных систем функций, которые удовлетворяют краевым задачам диференциальных уравнений штурм-лиувиллевского типа, Коэфициенты этих уравнений, вообще говоря, таковы, что уравнения имеют на конечном интервале особые точки. Если особые точки являются концами интервала, для которого формулируется краевая задача, то обычное краевое условие (стр. 239) замещается требованием, чтобы при приближении к этим точкам собственные функции оставались конечными или становились бесконечно большими величинами не выше заданного порядка.  [c.241]


Смотреть страницы где упоминается термин Функции Бесселя Якоби : [c.476]   
Справочное руководство по небесной механике и астродинамике Изд.2 (1976) -- [ c.363 , c.366 ]



ПОИСК



Бесселя

Бесселя функция

Функции Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте