Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали Магнитные свойства

Выпадение стабильного карбида W ухудшает магнитные свойства стали. Магнитные свойства стали ухудшает и предварительный отпуск (отжиг) при 750—900° С.  [c.213]

ЛИШЬ ДО температуры, соответствующей потере сталью магнитных свойств (740— 770° С).  [c.247]

Для большинства сталей магнитные превращения протекают, в интервале критических температур 765—780° С, -при которых магнитная проницаемость резко падает и становится равной единице. После потери сталью магнитных свойств с образованием аустенита глубина проникновения тока резко возрастает.  [c.49]


Описанная настройка относится к холодному режиму , когда стальная деталь нагрета ниже критической точки. При переходе через критическую точку, т. е. после потери сталью магнитных свойств, параметры нагрузки изменяются и настройка системы может потребовать поправок.  [c.121]

Марка стали Магнитные свойства Твердость стали  [c.425]

Марка стали Магнитные свойства S в Ч S О  [c.1440]

Хромистая сталь (1% С и 1,5 или 3% Сг) имеет приблизительно такие Hмагнитные свойства, что и углеродистая. Эти стали обладают значительно большей прокаливаемостью, и поэтому из них можно изготавливать магниты больших размеров.  [c.542]

Однако дефицитность кобальта и то обстоятельство, что более высокие магнитные свойства достигаются в сплавах Fe— Ni—А (менее дефицитных), крайне ограничили применение кобальтовых сталей.  [c.542]

Термическая обработка и магнитные свойства магнитных сталей (ГОСТ 6862-71)  [c.543]

Марка стали Термическая обработка", С Магнитные свойства (не менее)  [c.543]

Если в процессе изготовления деталей трансформатора сталь была подвергнута даже незначительной пластической деформации (например, рубке листов, загибу), то магнитные свойства ухудшаются.  [c.549]

Обработка резанием, холодная штамповка, навивка ленточных сердечников ухудшают магнитные свойства стали возрастают коэрцитивная сила, а следовательно, и потери на гистерезис, резко падает индукция в слабых и средних полях. Для восстановления магнитных свойств рекомендуется отжиг при 750—900 °С.  [c.309]

Как указывалось, углеродистые стали после закалки приобретают достаточные магнитные свойства (стали У10—У12), поскольку величина Я значительно возрастает после закалки на мартенсит в результате возникновения напряжений в кристаллической решетке.  [c.276]

Однако вследствие малой прокаливаемости, склонности к старению и потере магнитных свойств легированные стали в качестве магнитнотвердых материалов эффективнее углеродистых сталей.  [c.276]

Стали, содержащие Сг, и Со, хорошо прокаливаются. Магнитные свойства хромистых и углеродистых сталей почти идентичны.  [c.277]

У вольфрамовых и кобальтовых сталей большая стабильность и значительно лучшие показатели магнитных свойств.  [c.277]

Начало пластической деформации соответствует наступлению некоторого критического состояния металла, которое можно обнаружить не только по остаточным деформациям, но и по другим признакам. При пластической деформации повышается температура образца у стали изменяются электропроводность и магнитные свойства на полированной поверхности образцов, особенно плоских, заметно потускнение, являющееся результатом появления густой сетки линий, носящих название линий Чернова (линий Людерса). Последние наклонены к оси образца приблизительно под углом 45 (рис. 101, а) и представляют собой микроскопические неровности, возникающие вследствие сдвигов в тех плоскостях кристаллов, где действуют наибольшие касательные напряжения. В результате сдвигов по наклонным плоскостям образец получает остаточные деформации. Механизм образования их упрощенно показан на рис. 101, 6.  [c.93]


Как изменяются магнитные свойства немагнитных сталей при сложном нагружении  [c.378]

Наибольший практический интерес вызывают в настоящее время аморфные сплавы на основе переходных металлов группы железа. Они относятся к классу магнитомягких материалов и отличаются высокой магнитной проницаемостью и низкой коэрцитивной силой. Значения коэрцитивной силы этих сплавов зависят от химического состава сплавов. По сравнению с поликристалличе-скими магнитомягкими материалами аморфные сплавы обладают рядом преимуществ более низкими потерями по сравнению с трансформаторной сталью, повышенной прочностью, более низкой чувствительностью магнитных свойств к деформациям. Важным преимуществом является более низкая стоимость производства. Все это открывает широкие перспективы использования аморфных магнитных сплавов.  [c.375]

Таблица 27.19. Магнитные свойства электротехнической нелегированной стали [14] Таблица 27.19. <a href="/info/57317">Магнитные свойства</a> электротехнической нелегированной стали [14]
Таблица 27.20. Магнитные свойства сортовой электротехнической нелегированной стали [9] Таблица 27.20. <a href="/info/57317">Магнитные свойства</a> сортовой электротехнической нелегированной стали [9]
Таблица 27.22. Магнитные свойства тонколистовой электротехнической холоднокатаной анизотропной стали [15 Таблица 27.22. <a href="/info/57317">Магнитные свойства</a> тонколистовой электротехнической холоднокатаной анизотропной стали [15
Таблица 27.25. Магнитные свойства стали Таблица 27.25. <a href="/info/57317">Магнитные свойства</a> стали
Та б л ица 27.26. Магнитные свойства ленты холоднокатаной рулонной анизотропной стали [П]  [c.638]

Таблица 27.27. Магнитные свойства электротехнических сталей с наибольшей проницаемостью в слабых полях [10] (удельное электрическое сопротивление 6-10 Ом-м) Таблица 27.27. <a href="/info/57317">Магнитные свойства</a> <a href="/info/33635">электротехнических сталей</a> с наибольшей проницаемостью в <a href="/info/364660">слабых полях</a> [10] (удельное электрическое сопротивление 6-10 Ом-м)
При нагреве сталь теряет магнитные свойства, прогреваясь постепенно, от слоя к слою, от поверхности вглубь. Распределение плотности тока, приведенное на рис. 1-3, искажается, а металл становится как бы двухслойным. При качественном рассмотрении можно считать, что распределение плотности тока изобразится ломаной линией, состоящей из отрезков двух экспонент, первая из которых соответствует стали, нагретой выше точки магнитных превращений (рис. 1-7), а вторая — стали, обладающей магнит-  [c.21]


Как видно из формулы (1-44), КПД индуктора от начала первой стадии нагрева к концу второй стадии повышается вследствие роста удельного сопротивления. С начала третьей стадии нагрева КПД падает, так как сталь теряет магнитные свойства.  [c.23]

При электрических и тепловых расчетах это определение особенно удобно, так как при температуре больше 750 °С большинство сталей почти полностью теряет магнитные свойства и тогда глубина закаленного слоя совпадает с глубиной слоя, потерявшего магнитные свойства.  [c.105]

Магнитнотвердые стали этой группы охватывают в основном хромистые, вольфрамовые и кобальтовые стали, которые приобретают повышенную коэрцитивную силу после закаливания на мартенсит. Помимо мартенсита после термообработки эти стали содержат. высокодисперсные карбиды. Наличие больших внутренних напряжений в основном предопределяет более высокую коэрцитивную силу, чем в обычных сталях. Хромистые стали отличаются от углеродистой стали присадкой хрома (до 3%) вольфрамовые н кобальтовые стали помимо хрома содержат соответственно присадки вольфрама (до 8%) и кобальта (до 15%). Введение вольфрама сопровождается повышением В , а кобальта — увеличением и В/, одновременно возрастает и (ВН)тах- Наиболее высокие для этих сталей магнитные свойства получаются в результате сложной термообработки, которая осуществляется после изготовления магнитов. Однако в магнитах из этих сталей наблюдается некоторое снижение остаточной индукции с течением времени. Для повышения стабильности применяют искусственное остарнвание выдерживанием. в кипящей воде и частичным размагничиванием готовых магнитов. Все стали допускают ковку в нагретом состоянии и холодную обработку ДО закалки..Магнитные характеристики относительно невысоки так, для хромистой стали с содержанием около 3% Сг и 1% С (остальное Fe) значения В, = 0,95 тЛ, — 4,8 ка1м-,- (ВН)тгх не менее 1,1 Kdot jM (табл. 20.1). Мартенситные стали могут применяться  [c.263]

Вако (викаллой) Ке-У-Со При содержании до 12 % V изотропен. Пластичен в горячем и холодном состоянии. Изделия изготовляют методами холодной обработки (резание, штамповка, гибка и ковка). Окончательные магнитные свойства не зависят от степени деформации и достигаются в результате отпуска для дисперсионного твердения. После отпуска тверд н хрупок При содержании свыше 12 % V анизотропен. Пластичен в горячем и холодном состоянии. Выпускается в виде очень тонкой холоднокатаной ленты и холоднотянутой проволоки со степенью обжатия свыше 95 %. Окончательные магнитные свойства зависят от степени деформации и достигаются в результате отпуска для дисперсионного твердения. После отпуска тверд и хрупок, но механические свойства тонких лент и проволок такие же, как у высокопрочной стали. Магнитные свойства у проволок выше, чем у лент  [c.111]

Роторы, работающие при низкой температуре, изготавливаются из 2%- или 3%-иых никелевых сталей, которые после термической обработки имеют лучшее сочетание прочностных и пластических характеристик при низкой температуре. 3% Ni, Мо, V сталь выбрана для роторов генераторов потому, что она имеет лучшие по сравнению с хромистыми сталями магнитные свойства. В последние несколько лет были достигнуты значительные успехи в решении проблемы обеспечения энергетических установок рото-  [c.214]

Для магнитопроводов электрических машин с круговой формой статора и ротора выполнить требование параллельности направлений намагничивания и прокатки значительно труднее. Наиболее рациональным решением в этом случае является применение малотекстурованных сталей, которые обладают несколько повышенными по сравнению с горячекатаными сталями магнитными свойствами и хорошими механическими качествами, присущими холоднокатаным сталям, что обеспечивает высокий коэффициент заполнения при незначительной магнитной анизотропии.  [c.291]

Сравнение данных, приведенных в табл. 84 и 85, показывает, что аусте-нито-мартенситные дисперсионно твердеющие стали обладают существенно более высокими свойствами, чем чисто аустенитиые стали, и применение их предпочтительней, разумеется, если нет дополнительных требований в отношении магнитных свойств.  [c.495]

Кобальтовые стали (содерн<ащие наряду с хромом 5 или 157о Со) обладают наиболее высокими магнитными свойствами (Не от 100 до 170 Э и Вг от 8000 до 85 Гс) по сравнению с другими сталями.  [c.542]

Для получения высоких магнитных свойств стали подвергают сложион термической обработке, состоящей из предварительной нормализации (по.ч-дупшой закалки), закалки с обычной температуры в воде или масле и низкого отпуска (желательно с предварительной обработкой холодом).  [c.543]

Из изложенного следует, что лишь сплавы Э. З и Э4 являются феррит-ными. Магнитные характеристики у них получаются выше, но они более хрупки. Сплавы группы ЭЗ и Э4 называются трансформаторным железом, а Э1 и Э2 — динамной сталью. В соответствии с этим трансформаторное железо (основное применение — сердечники трансформаторов), обладающее более высокими магнитными свойствами, имеет более ннзкие механические свойства, чем динамная сталь (главное применение — детали динамомашин).  [c.548]

Современная технология производства высших сортов электротехнической стали заключается в следующем выплавка стали с заданным содержанием кремния и минимальным углерода (практически содержание углерода получается около 0,05%), затем прокатка в горячем состоянии на так называемый подкат толщиной 2,5 мм и последующая холодная прокатка на толщину 0,5—0,35 мм. Перед холодной прокаткой проводят отжиг при 800°С. При этом содержание углерода уменьшается до <0,02%С. Заключительный отжиг проводят для снятия наклепа и укрупнения зерна при 1100—1200°С в атмосфере водорода. Если предшествовавшая холодная деформация была значительной (45—60%), то получается текстурованная структура (степень текстурованности порядка 90%) если деформация была меньше 7—10%, то получается так называемая малотекстурованная структура. Наконец, если прокатку проводить только в горячем состоянии, то текстуры не будет, магнитные свойства вдоль н поперек прокатки становятся одинаковыми.  [c.549]


Магнитные свойства трансформаторной стали анизотропны. Магнитная проницаемость вдоль направления (111) в 30 раз меньше, чем в направлении (100). Текстурованная листовая сталь изготовляется с ребровой текстурой, когда ребро куба (100), т. е. направление легкого намагничивания, параллельно направлению прокатки, а плоскость 100j параллельна плоскости проката. Текстурованную ли-  [c.309]

Анизотропия свойств влияет на пластичность и ударную вязкость горячеобработанной стали величина ударной вязкости у поперечных образцов ниже, чем у продольных. Между тем анизотропию можно использовать, например, для улучшения магнитных свойств трансформаторной стали.  [c.88]

Некоторые высоколегированные стали выделены в особые группы, их обозначают буквами, которые ставятся впереди Ж — хромистые нержавеющие стали Я — хромоникелевые нержавеющие стали Е — электротехнические стали с особыми магнитными свойствами Р — быстрорежущие стали Ш — шарикоподшипниковые стали и т. д. Например, стали ЖЬ Я1, Е12, Р]8 и ШХ15.  [c.176]

Согласно результатам микроструктурного и рентгеноструктурного ана-лизов механизм намагничивания немагнитных высоколегированных сталей состоит в диффузионном перераспределении никеля и выделением о-фазы, которая обладает магнитными свойствами [186].  [c.334]

За счет чего изменяются магнитные свойства немагнитных сталей типа 20Х23Н18  [c.378]

Магниты с железными сердечниками. Стандартный магнит с железным сердечником типа используемых в большипство лабораторий, схематически изображен на фиг. 8. Он был сконструирован Вейссом [79] еще в 1907 г. U-образное ярмо Y изготовлено из углеродистой стали очень мягкой в отношении магнитных свойств. Ци-лпндрические полюса АА и ВВ изготовлены из того же материала полюсные наконечники А и В представляют собой усеченные конусы из кобальтовой стали, обладающей очень высокой намагниченностью насыщения.  [c.453]

Магнитный метод анализа текстур менее универсален, чем описанные выше. Но он весьма широко используется для многих ферромагнитных материалов, обладающих анизотропией магнитных свойств (трансформаторная и динамная сталь и др.) - Метод основан на том, что образец из магнитно анизотропного материала при намагничивании стремится ориентироваться направлением легкого намагничивания вдоль магнитного поля. При этом создается крутящий момент, величина которого зависит от положения образца. Определение этого крутящего момента при разных положениях образца и позволяет судить об анизотропии магнитных свойств (константе магнитной анизотропии). Метод весьма эффективен для анализа рассеяния текстуры, однако не позволяет расшифровывать кристаллографические па-раметры текстуры. Благодаря своей простоте метод широко используется как контрольный в производственных условиях. В сочетании с рентгеновским методом может быть полезен и для анализа текстур.  [c.274]


Смотреть страницы где упоминается термин Стали Магнитные свойства : [c.554]    [c.50]    [c.31]    [c.331]    [c.679]    [c.78]   
Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении (2001) -- [ c.347 , c.348 , c.349 ]



ПОИСК



Магнитная стали



© 2025 Mash-xxl.info Реклама на сайте