Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектр кислорода

Рис. 25.30. Фотоэлектронный рентгеновский спектр кислорода (мишень — АЬОз) [39] Рис. 25.30. <a href="/info/166781">Фотоэлектронный рентгеновский</a> спектр кислорода (мишень — АЬОз) [39]

Рис. 25.45. Оже-спектр кислорода (мишень MgO) 142] Рис. 25.45. Оже-спектр кислорода (мишень MgO) 142]
Спектр кислорода в клатрате и двойные переходы в комплексе 51  [c.51]

При воздействии тепла, солнечных лучей (ультрафиолетового спектра), кислорода воздуха происходит старение полиэтилена, вызывающее постепенное ухудшение диэлектрических и физикомеханических свойств. При добавлении в полиэтилен антиокислителя процесс окисления замедляется и процесс старения происходит менее интенсивно. Это увеличивает срок службы полиэтилена в кабельных изделиях, так как антиокислитель тормозит и препятствует реакции окисления полиэтилена, обрывая кинетические цепи. При этом процессе расходуется антиокислитель. Поэтому при выборе стабилизаторов необходимо учитывать не только свойство антиоксиданта, но и его количества в зависимости от условий переработки и эксплуатации полиэтилена.  [c.293]

Экспериментально аномалии в уширении перекрывающихся спектральных линий наблюдались, например, в инверсионном и вращательном [38, 39] спектрах аммиака, в микроволновом спектре кислорода [33].  [c.92]

По сравнению с оптическим спектром рентгеновские спектры элементов обладают довольно простой структурой. Рентгеновские спектры характеризуются однообразием и наличием малого числа линий. При переходе от одного (легкого) элемента к другому (тяжелому) элементу единственное изменение в рентгеновском спектре заключается в смеш,ении линий в сторону коротких волн. Об этом свидетельствует схема рентгеновских спектров различных элементов (от кислорода до урана), представленная на pnj . 6.38, где по оси ординат отложены атомные номера элементов, а по оси — абсцисс — длина волны.  [c.161]

По мере увеличения энергии нейтрона может возбуждаться или принимать участие в испускании каскадных у-квантов все большее число ядерных уровней. И для энергий нейтронов выше 4 Мэе спектр у-квантов при неупругом рассеянии нейтронов становится почти во всех случаях сплошным (кроме кислорода н углерода).  [c.30]

Таблица 31.75. Спектральный коэффициент поглощения кислорода в ультрафиолетовой области спектра [69] Таблица 31.75. <a href="/info/126574">Спектральный коэффициент</a> <a href="/info/251583">поглощения кислорода</a> в ультрафиолетовой области спектра [69]

Для числа эквивалентных электронов, как раз равного половине максимально возможного k = 2l- - ), получается, что С(/-, 5) = 0. Таким образом, термы, соответствующие конфигурации из половины от максимального числа эквивалентных электронов, в рассматриваемом приближении вовсе не расщепляются. В действительности, расщепление термов, соответствующих конфигурации из 2/-]- 1 эквивалентных электронов, мало. Например, для приведенных триплетных термов NII и FII постоянные расщепления соответственно равняются Ni[f"P)=45 см и Срп( Р)=1б4 см . Конфигурации же 2р в спектре однажды ионизованного кислорода (О Л) соответствует очень узкий дублетный терм 2р 2р которого Av = 4,5 см и Со н( Р) = = 3 см К Второй терм, соответствующий этой же конфигурации, 2р Юу имеет несколько большее расщепление, но и для него постоянная расщепления невелика o[i(2D)=l2 см К  [c.193]

Две первых из этих линий наблюдаются в спектрах туманностей, последняя совпадает с яркой зеленой линией, наблюдаемой при свечении верхних слоев земной атмосферы. В лабораторных условиях эти линии возникают при свечении смеси кислорода с каким-либо инертным газом.  [c.250]

Применительно к диффузии катионов возможны следующие рассуждения. Положим, имеется щелочно-силикатное стекло, не склонное к фазовому разделению. В таком стекле ионы натрия статистически распределены в узлах и междоузлиях решетки, кроме того, имеется определенный спектр потенциальных барьеров. Вхождение примесного иона с тем н<е координационным числом по кислороду приводит к изменению степени поляризации электронов кислородного полиэдра, что, в свою очередь, приводит к увеличению прочности закрепления собственных катионов стекла и к изменению спектра потенциальных барьеров. Это приводит к снижению диффузионной подвижности примесного катиона по сравнению с собственным, так как уменьшается число термических дефектов и затрудняются ионные переходы. Если же входит примесный катион с другой координацией по кислороду, то изменения в кислородном полиэдре более значительны, так как входящий катион будет стремиться изменить координацию по кислороду в свою пользу. Скорость миграции такого катиона намного меньше диффузионно подвижности собственного иона и практически не зависит от его размеров. Если количество входящих катионов сравнимо с количеством собственных катионов, то изменение координации может привести к необратимым изменениям в анионной матрице стекла вплоть до разрыва анионной матрицы.  [c.17]

Ионное травление на одном из участков зоны 2 показало, что через 15 мин травления оксидный слой исчезает и в спектре присутствует интенсивный пик алюминия 68 эВ (рис. 3.216). При этом проявляется пик кремния 92 эВ, снижаются пики Р, S, С1, К, С, а также следы Са, N и значительного количества кислорода. Через 45 мин после травления (рис. 3.21 б) еще более вырастают пики А1 (68 эВ), Si (92 эВ), снижаются пики Р, S, С1, К, исчезает с поверхности пик Са, остаются пики N и  [c.157]

В гл. 6 рассматриваются более подробно вопросы использования солнечной энергии для получения теплоты. В данной главе остановимся только на системах, предназначенных для преобразования солнечной энергии в электрическую. Начнем поэтому с рассмотрения тех характеристик, которые являются наиболее важными при этих процессах, прежде всего— спектр солнечного излучения. На рис. 5.6 показано, как распределена по длинам волн энергия солнечного излучения, падающего в единицу времени на единицу поверхности и приходящегося на единичный интервал длин волн. Спектр, измеренный на верхней границе земной атмосферы, очень хорошо совпадает со спектром излучения абсолютно черного тела при температуре 6000 К. Абсолютно черным телом называется физическое тело, которое излучает энергию во всем спектре и поглощает все падающее на него излучение независимо от длин волн. Таких тел в природе не существует, но существуют тела с очень близкими свойствами. Понятие абсолютно черного тела играет важную роль в физике. Так, решая задачу о распределении излучения абсолютно черного тела по длинам волн, Макс Планк впервые сформулировал принципы квантовой механики. В распределении солнечного излучения по длинам волн, измеренном вблизи поверхности Земли, имеются большие провалы, обусловленные поглощением излучения на отдельных частотах или в отдельных интервалах частот атмосферными газами — кислородом, озоном, двуокисью углерода — и парами воды.  [c.95]


Выбор пал на использование для реакторов БН в качестве топлива окислов. Многолетний опыт эксплуатации окислов в качестве топлива для легководных реакторов показал, что хотя они и не лишены недостатков, они все же не подвергаются радиальному распуханию и имеют более высокую точку плавления, что в какой-то степени компенсирует их более низкую теплопроводность. Следует тем не менее отметить, что содержащийся в окисном топливе кислород, выполняя роль замедлителя, как бы смягчает нейтронный спектр  [c.177]

Уменьшение концентрации озона может привести ко многим другим последствиям, масштабы и характер которых гораздо труднее предугадать. Сильно пострадает морской фитопланктон — один из главных поставщиков кислорода в атмосферу. У некоторых растений, особенно у овощных культур, под действием повышенной ультрафиолетовой радиации замедляется рост. Чересчур продолжительное ультрафиолетовое облучение способствует появлению мутантов. Насекомые видят ультрафиолетовый свет в результате изменения всего солнечного спектра глаз насекомого не сможет безошибочно определять плоскость поляризации рассеянного небесного света, окраску цветов, признаки полового диморфизма, хотя роль, которую в этом играют органы зрения, еще не до конца выяснена.  [c.308]

За уменьшением работы выхода, обусловленным перестройкой структур, она вновь значительно возрастает по мере увеличения степени заполнения поверхности кислородом. Эта стадия соответствует началу зарождения оксидной пленки и легко обнаруживается методом ДМЭ. Образование трехмерной оксидной пленки и сопутствующие ей атомарные перестройки приводят к появлению в рентгено-фотоэлектронных и Оже-спектрах полос, соответствующих ионизированным формам кислорода (0 , О - ) и металла (Ме +).  [c.39]

Дифракционные измерения окисленной поверхности никеля показали, что параметры решетки объемного оксида NiO достигаются при толщинах адсорбированных слоев кислорода, эквивалентных четырем монослоям. Однако из данных фотоэмиссионных спектров следует, что при длительной экспозиции никеля в атмосфере кислорода даже при 0 = 0,6 имеются признаки, свидетельствующие о возникновении зародышей NiO.  [c.40]

До сих пор мы не касались вопроса о спектральном распределении радиационного теплового потока. Однако этот вопрос играет большое значение при выборе способа тепловой защиты. К тому же исследования спектров натолкнули на проблему излучения в атомных линиях, которая оказалась важной для суммарного теплового потока. При численных расчетах обычно учитывается непрерывное излучение п излучение в молекулярных полосах высокотемпературного воздуха. Основными механизмами, определяющими сплошное излучение, являются рекомбинация ионов атомарного азота и кислорода (свободно-связанные переходы) и ускорение свободных электронов вблизи ионов и нейтральных атомов (свободно-свободные переходы).  [c.292]

Как известно, развиваемое в настоящее время направление по созданию реакторов-размножителей на быстрых нейтронах с натриевым охлаждением и окисным уран-плутониевым топливом в стержневых твэлах с покрытием из нержавеющей стали не может обеспечить необходимое время удвоения делящегося материала —6 лет. Причина этого — поглощение нейтронов натриевым теплоносителем и стальным покрытием, смягчение спектра нейтронов кислородом в окисном топливе. При применении гелиевого теплоносителя отпадает необходимость использования стали в качестве защитных покрытий и появляется возможность применения керамического монокарбидного ядер-  [c.7]

Нуяшо также выяснить, почему известная формула Максвелла и==с/ V к в одних случаях (инертные газы, кислород и др., видимая область спектра) превосходно соответствует опытным данным, а в других приводит к резкому расхождению с результатами эксперимента.  [c.136]

В 1962 г. был обнаружен космический источник интенсивного радиоизлучения, который оптически наблюдался в виде звездоподобного объекта о угловым диаметром 0,5". Вначале считали, что это — звезда в нашей Галактике, излучающая радиоволны, но затем был получен ее спектр, линии которого оказались значительно смещенными в направлении красного конца. Например, линия атомарного кислорода, имеющая нормальную длину волны 3,727-10- см была обнаружена при длине волны 5,097-10-5 см Одно из объяснений заключалось в том, что это — чрезвычайно массивная звезда с гравитационным красным смещением. Если эта гипотетическая радиозвезда находится в нашей Галактике, то ее расстояние от Земли должно быть меньше 1022 см.  [c.421]

Снижение работы выхода полупроводников путем адсорбции на их поверхности электроположительных атомов (цезия, бария и других) приводит к уменьшению X и резкому увеличению квантового выхода. В случае GaAs, GaP, Si и ряда других полупроводников совместная адсорбция цезия и кислорода приводит к столь сильному снижению работы выхода, что реализуется условие отрицательного электронного сродства (ОЭС). Полупроводники с ОЭС обладают наибольшим квантовым выходом в видимой и ближней инфракрасной областях спектра.  [c.576]

Поглощение лучистой энергии в атмосфере (табл. 44.38) [32]. Основную роль в поглощении лучистой энергии в атмосфере играют кислород, озон, углекислый газ, водяной пар и пыль. В целом атмосферой поглощается 17—257о солнечного излучения. Кислород имеет полосы поглощения главным образом в ультрафиолетовой части спектра. В видимой части поглощение происходит в полосах А с центром около 0,76 мкм и В с центром около 0,69 мкм, однако поглощение в них мало и слабо влияет на ослабление излучения.  [c.1194]

Твердые вещества имеют широкие полосы поглощения и для накачки целесообразно использовать газоразрядные лампы с широким спектром излучения. Газообразные вещества имеют относительно узкие и весьма интенсивные линии поглощения и возбуждаются нередко с помощью газового разряда в самой активной среде, — т. е. в газе. Для газовой смеси удается получить высокую инверсию населенности при определенном режиме газового разряда. К таким средам относятся смеси гелия и неона, гелия и ксенона, неона и кислорода, аргона и кислорода и др. Обычно газовая среда состоит из двух газов, в которой активным является один из газов, а второй лишь используется для не-, редачи энергии накачки к частицам активного газа например, в ге-лийнеоновом ОКГ в состав смеси входит гелий Не и неон Ne в соотношении 10 I давление составляет 1 мм рт. ст. Источником стимулированного излучения служат атомы неона. Возбуждение достигается либо с помощью высокочастотного генератора, либо с помощью тлеющего разряда в трубке при высоком постоянном напряжении. Возбужденные атомы гелия с большим временем жизни, 1000 мксек, передают при столкновениях свою энергию атомам неона. В смеси азота с углекислым газом излучательные переходы совершаются между уровнями молекул СОз, а возбужденные атомы азота лишь передают свою энергию углекислому газу. В генераторах на аргоне генерация возникает при дуговом разряде в аргоне. Возможно использование и других газов. —  [c.223]


Озон образуется в стратосфере при взаимодействии молекулярного кислорода О2 и атомарного кислорода О в присутствии третьего элемента (этот процесс обычно происходит на поверхности аэрозольной частицы). Атомарный кислород — продукт фотолитиче-ской диссоциации молекул кислорода. Если кислород поглощает излучение Солнца главным образом в видимой и ультрафиолетовой областях спектра, то основная часть излучения, поглощаемого озоном, находится почти целиком в ближней ультрафиолетовой области.  [c.305]

Влияние облучения. Даусон [12] сделал обзор литературы по влиянию облучения на коррозию циркония, цирка-лоя-2 и сплава Zr—2,5 Nb. Положение является достаточно сложным, так как имеется потенциальное и наблюдаемое влияние одновременно состава сплава, температуры, коррозионной среды (пар, вода с растворенными водородом и кислородом или без них), интенсивности и спектра излучения (быстрые нейтроны, у-кванты, осколки деления) и теплопередачи. Эти факторы могут действовать на металл, окисный слой или на коррозионную среду таким образом, что можно, вероятно, постулировать увеличение скорости коррозии по сравнению с условиями без облучения.  [c.247]

Lg и (ИЯ—10 )Лд. Исследование спектров 3. асимптотич. ветви обнаружило значит, аномалии хим. состава их оболочек повышенное обилие углерода и элементов — продуктов. ч-процесса (см. Я верная астрофизика), образованных в недрах этих 3. и выне-ссипых наружу конвекцией. Эти 3. имеют вырож-деяное углеродно кислородное ядро и окружающий ядро двойной слоевой источник энергии, в к-ром происходит последовательное превращение водорода в гелий и гелия в углерод и кислород. Время жизни 3. асимптотич. ветви 10 лет, а массы (1—8)Мд.  [c.69]

Звёзды спектр, классов R и N являются углеродными звёздами (иногда их объединяют в один спектр, класс С). У них [С] > [О] и весь кислород захватывается в1СО, др. оксиды не образуются. Оставшийся углерод идёт на образование наиб, устойчивых радикалов — N ( дис 8 эВ), S ( дис эВ),С2 ( дис  [c.192]

П. 3. а. в раал. участках спектра резко изменяется. Так, КВ-валучение Солнца (X < 290 нм) практически полностью поглощается верх, слоями атмосфери и до поверхности Земли почти не доходит. На рис. 1 показаны высоты, достигая к-рых при вертикальном падении солнечный поток ослабляется в е раз, В диапазоне 8—80 нм солнечное излучение поглощается молекулами и атомами азота и кислорода. В области 80—  [c.136]


Смотреть страницы где упоминается термин Спектр кислорода : [c.146]    [c.569]    [c.606]    [c.33]    [c.253]    [c.576]    [c.106]    [c.190]    [c.52]    [c.157]    [c.19]    [c.95]    [c.8]    [c.139]    [c.337]    [c.52]    [c.183]    [c.221]    [c.393]    [c.79]    [c.420]   
Оптические спектры атомов (1963) -- [ c.248 ]



ПОИСК



Кислород

Спектр поглощения кислорода

Спектр поглощения света антиферромагнитным кислородом

Спектры ионов, сходных с гелием кислородом



© 2025 Mash-xxl.info Реклама на сайте