Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистический вес сферических волчков

Если молекула является сферическим волчком в силу симметрии, то для получения термического распределения следует применять статистические веса, взятые из табл. 7 или из таблиц, подобных ей. В результате мы не получим плавного хода кривой. На фиг. 15,6 кривая, изображенная жирной линией,  [c.53]

Для невырожденных колебательных уровней это выражение дает очень хорошее приближение однако для вырожденных колебаний необходимо ввести дополнительные члены, характеризуюш ие взаимодействие, связанное с силами Кориолиса (см. ниже). Сравнивая (4,77) с (4,6), мы видим, что вращательные уровни невырожденных колебательных состояний сферического волчка очень схожи с соответствующими вращательными уровнями линейных молекул. Различие состоит в том, что в данном случае статистический вес равен не (27+ 1), а (27+ 1) .  [c.475]


Выражения для статистической суммы в случае сферического волчка можно получить простой подстановкой А = В в приведенные выше формулы для симметричного волчка.  [c.536]

Р, J, асимметричных волчков 55 У, линейных молекул 27 J, симметричных волчков 35 У, сферических волчков 51 Полны статистический вес (см. также Статистический вес) 532 независимость от инверсионного удвоения 442, 495  [c.619]

Статистические веса и свойства симметрии. Рассматривая сферический волчок как симметричный волчок, у которого Л = 5 и, следовательно, совпадают все уровни с одинаковыми У, но различными К (см. фиг. 8), находим степень вырождения его уровней. В соответствии с возможными значениями числа К и двукратным вырождением при КО (см. выше) каждый уровень сферического волчка с данным значением У будет (2 У-(-1)-кратно вырожден, дополнительно к обычному (2 У- -1)-кратному пространственному вырождению. Первый тип вырождения соответствует (2У--(-1) ориентациям вектора J по отношению к заданному направлению в молекуле, вт0р011 тип вырождения соответствует (2У-р1) ориентациям вектора J по отнопшнию к заданном1у направлению в пространстве. Таким образом, статистический вес уровня  [c.51]

Выражение (2 7 [ 1) если не учитывать постоянный множитель, определяемый ядерным спином (см. стр. 39), представляет полный статистичзский вес только в случае молекулы, случайно являющейся сферическим волчком, или молекулы, у которой спины одинаковых ядер очень велики. Сложнее обстоит дело для молекулы, являющейся сферическим волчком в силу своей симметрии и имеющей малые спины одинаковых ядер добавочный множитель, на который следует умножить (2 7- -1)-кратноэ пространственное вырождение для получения полного статистического веса, не будет равен просто (2 74-1), умноженному на множитель, зависящий от спина ядра. Как будет более подробно показано в гл. IV, в случае тетраэдрических молекул (точечная группа Т ,), таких как СН4, СО , СС1,, Р , получаются три типа симметрии вращательных уровней, называемых А, Е я Г, которые аналогичны симметричным (я) и антисимметричным а) уровням линейных симметричных молекул и уровням А и Е молекул с осью симметрии третьего порядка. Оказывается, что за исключением самых низких вращательных уровней все три типа уровней возникают при данном значении 7 ). Число подуровней каждого типа меняется по  [c.52]

Статистические суммы 531 внутренние 532 в приближении гармонического осциллятора и жесткого ротатора 539, 540 вращательные 533, 535 колебательные 533, 534 молеку.т с внутренним вращением 540 постоянные равновесич химических реакций, выраженные через статистические суммы 556 поступательные 532 Статистический вес влияние инверсионного удвоения 442, 495 внутренний и полный 532 вращательных уровней асимметричных волчков 67 линейных молекул 28, 400 симметричных волчков 38, 439 сферических волчков 51, 474, 477 полный, включая ядерный спин для несимметричных молекул 28, 39, 539 Степень вырождения 93, 94, 118 Степень деполяризации комбинационного рассеяния 264, 291 релеевского рассеяния 266, 291 способы, позволяющие отличать полносимметричные и неполносимметричные комбинационные линии 269, 292, 521, 522  [c.623]


Магнитное квантовое число 38 Магнитный дипольный момент 259 Матрица дипольного момента 271 индуцированного дипольного момента 275 Матричные элементы составляющих тензора полиризуемости 275. 279, 288, 291, 469 функции возмущения 234, 237 электрического дипольного момента 44, 71, 274, 288, 443 Мгновенная ось вращения асимметричных волчков 57 симметричных волчков 36 сферических иолчков 51 Междуатомные расстояния асимметричных волчков 519 изотопических молекул 424.466 линейных молекул 34, 192, 423 симметричных волчков 428, 466 тетраэдрических молекул 486 Механические модели для решения задачи о колебаниях 176 Миноры векового определителя, определение формы нормального колебания 83,87. 161, 164, 169, 172, 176 Множитель Больцмана 271, 283, 28Э Множитель, обусловленный ядерным спином, во вращательной части статистической суммы 539, 553 Модели молекулы, механические, для изучения колебаний молекулы 78,176 Модель потенциальной поверхности 219 Модификации, не комбинирующие асимметричных волчков 67, 498 влияние на термодинамические функции 538, 544, 553 линейных молекул 29 симметричных волчков 41—43, 444 тетраэдрических молекул 53, 482 Молекулы  [c.604]


Смотреть страницы где упоминается термин Статистический вес сферических волчков : [c.537]    [c.599]    [c.599]    [c.599]    [c.619]    [c.623]    [c.638]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.51 , c.474 , c.477 ]



ПОИСК



Ве, Вщ, Вру а, ?,• и D сферических волчков

Волосевич

Волчков

Волчок

Классическое движение (векторная диаграмма). Уровни энергии. Свойства I симметрии и статистические веса. Термическое распределение вращательных уровней. Инфракрасный спектр. Вращательный комбинационный спектр Сферический волчок

Сферические волчки



© 2025 Mash-xxl.info Реклама на сайте