Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Невырожденные колебания собственные функции

Фиг. 42. Симметрия колебательных собственных функций невырожденных колебаний Фиг. 42. Симметрия <a href="/info/322708">колебательных собственных функций</a> невырожденных колебаний

Молекулы, имеющие вырожденные колебания. Если молекула имеет как вырожденные, так и невырожденные колебания, то правила, сформулированные в предыдущем разделе, применимы при условии, что для всех вырожденных колебаний квантовые числа Vj равны нулю (возбуждены только нулевые вырожденные колебания). Это является следствием того, что при Vj — Q множитель в полной колебательной собственной функции, соответствующий дважды вырожденному колебанию, равен, согласно уравнению (2,56),  [c.116]

Для невырожденных типов симметрии легко убедиться в том, что различное поведение (различные характеры) по отношению к двум из плоскостей (или по отношению к двум из осей симметрии j, перпендикулярным оси симметрии Ср) привело бы к противоречию со свойством симметрии или антисимметрии колебаний или собственных функций по отношению к повороту вокруг оси симметрии Ср. Для дважды вырожденных типов симметрии на стр. 112 было показано, что отражения в плоскости или повороты вокруг осей симметрии j описываются преобразованием (2,76). Поэтому для этих типов симметрии характер = + равен нулю независимо от значений угла р.  [c.123]

Точечные группы. и Z).,,, — Если молекула обладает осью симметрии порядка р Ср или S , где р четное, то колебание или собственная функция может быть также антисимметричной по отношению к этой оси (см. стр. 96). Поэтому получается в два раза больше невырожденных типов симметрии, чем при нечетных р. Для точечной группы Ср , р плоскостей нужно разделить на два класса, р/2 плоскостей, обозначаемых символом о , и остальные р/2 плоскостей, обозначаемых символом (последние плоскости по отношению к первым являются диагональными плоскостями), гак как эти две совокупности плоскостей отличаются различными свойствами преобразования (имеют различные характеры). Сразу же видно (ср., например, фиг. , ж и 1,к), что отражение молекулы в плоскости можно заменить отражением в плоскости с последующим поворотом на угол 2тг/р вокруг оси Ср. Только ось симметрии Ср и р 2 плоскостей являются независимыми элементами симметрии, и четыре невырожденных типа симметрии соответствуют четырем комбинациям - -f-, -j---, ----------, отличаясь различным поведением по отношению к двум операциям Ср и Поведение по отношению к отражению в плоскости о , которое не всегда совпадает с поведением по отношению к отражению в плоскости о , получается, перемножением характеров для операций Ср и о .  [c.127]

Точечные группы и О. Точечная группа кубической симметрии (к которой принадлежат молекулы, подобные СН4) имеет четыре оси симметрии третьего порядка. Невырожденные колебания или собственные функции могут быть по отношению к этим осям только симметричными (см. стр. 96), но могут являться симметричными или антисимметричными по отношению к шести плоскостям симметрии проходящим через оси симметрии Сд, и, следовательно, также по отношению к трем зеркально поворотным осям четвертого порядка 4. Таким образом, мы имеем два тта симметрии (Л1 и А< ) невырожденных колебаний или собственных функций. Более строгий анализ с помощью теории групп (см. Вигнер [923]) показывает, что в данном случае имеется именно один дважды вырожденный тип симметрии Ё, как и д,1я точечной группы и два трижды вырожденных типа симметрии и Их характеры даны без дальнейшего доказательства в табл. 28.  [c.137]


Обертоны. В случае полос, соответствующих обертонам, нижнее состояние является основным колебательным состоянием (колебательная собственная функция полносимметрична), и поэтому, согласно общему правилу (стр. 273), обертон будет активным в инфракрасном спектре, если, по крайней мере, одна составляющая дипольного момента относится к тому же типу симметрии, что и колебательная собственная функция верхнего состояния и он будет активным в комбинационном спектре, если, по крайней мере, одна составляющая поляризуемости относится к тому же типу симметрии,, что и функция Типы симметрии собственной функции верхнего состояния для невырожденных колебаний можно найти по правилу, данному на стр. 115, а в случае вырожденных колебаний — из табл. 32 типы симметрии дипольного момента и поляризуемости приведены в табл. 55.  [c.284]

Оператор Гамильтона для многоатомной молекулы 227, 403 Оператор импульса 227 Операторный метод решения волнового уравнения 226 Оператор полного момента количества движения 227, 403, 431 Операции симметрии 11 влияние на вращательную, электронную и полную собственные функции 118 влияние на вырожденные нормальные колебания 96 (глава П, Зб) влияние на невырожденные нормальные колебания 95 (глава II, За) влияние на колебательные собственные функции 115 (глава И, Зв) возможные комбинации (точечные группы) 16  [c.618]

Вырожденные типы симметрии. Как указывалось ранее, молекула, обладающая, по крайней мере, одной осью симметрии выше второго порядка, всегда имеет как вырожденные, так и невырожденные нормальные колебания (собственные функции). В этом случае, кроме типов симметрии, подобных разобранным выше мы имеем один или несколько вырожденных типов симметрии, обычно обозначаемых буквой Е, если они дважды вырождены, и буквой Р, если они трижды вырождены В то время как влияние различных операций симметрии на невырожденные колебания или собственные функции может описываться просто множителем - -1 и — 1, такой способ описания не может быть применен в случае вырожденных колебаний и собственных функций, так как они в общем случае переходят в линейную комбинацию согласно уравнзнию (2,62). Можно показать, что для характеристики поведения вырожденного колебания или собственной функции достаточно указать для каждой операции симметрии значение суммы  [c.122]

Полная колебательная собственная функция (1 , согласно (2,46), является произведением собственных функций <1(50, <1 2( 2)>--- гармонических осцилляторов, соответствующих ЗЛ —6 или ЗЛ —5 нормальным координатам. Поэтому, если мы имеем только невырожденные нормальные колебания, то полная собственная функция по отношению к данной операции симметрии будет симметричной при условии, что число множителей ( ,/), антисимметричных относительно этой операции симметрии, является четным полная собственная функция будет антисимметричной, если имеется нечетное число антисимметричных множителей. Поведение полной собственной функции [Ю отношению к данной операции симметрии не зависит от числа симметричных множителей. Иначе говоря, в силу антисимметричности функций 4 г( ) антисимметричных нор-  [c.115]

Обобщение предыдущих результатов. Мы вывели свойства симметрии колебательных собственных функций из свойств симметрии нормальных координат. В действительности, свойства симметрии собственных функций имеют значительно более общий характер и не зависят от предположения о гармоничности колебаний. Потенциальная энергия, даже если она и не является простой квадратичной функцией от составляющих смещений, как в (2,25), должна быть инвариантна по отношению ко всем операциям симметрии, образующим точечную группу, к которой принадлежит молекула. Поэтому уравнение Шредингера (2,40) инвариантно по отношению к этим операциям симметрии и, следовательно, собственная функция относительно этих операций симметрии может либо быть только симметричной, либо антисимметричной, если состояние является невырожденным либо может преобразоваться также и в линейную комбинацию взаимно вырожденных собственных функций, если состояние вырожденно (см. Молекулярные спектры 1, гл. V, 1). Можно показать, что последнему случаю соответствует ортогональное преобразование, при двукратном вырождении имеющее вид (2,75) или (2,76).  [c.118]


В случае дважды вырожденных колебаний суммы (2,85) состоят только из двух членов (1ааЛ ьь) могут быть легко найдены на основании ранее изложенных соображений. Характеры трижды вырожденных колебаний или собственных функций получают с помощью теории групп (см. Вигнер [923]), и мы примем эти результаты без доказательства. Для невырожденных колебаний суммы (2,85) состоят только из одного члена, равного — Ь так как = или i = —  [c.123]

Точечные группы С и D . Согласно результатам, полученным нами ранее (стр. 102), колебание (или собственная функция) по отнопшнию к оси симметрии третьего порядка может быть только симметричным (или вырожденной), но не антисимметричным, так как /) = 3 является нечетным. Следовательно, точечные группы jj, и обладают только двумя типами невырожденных колебаний, которые оба симметричны по отношению к оси С . один из типов симметричен, а другой антисимметричен относительно трех плоскостей 0 или относительно трех осей симметрии С.,. Эти типы симметрии невырожденных колебаний обозначаются как и Ао. Не может быть колебаний или собственных функций, которые являлись бы симметричными по отношению к одной из плоскостей симметрии или 0ДН011 из осей симметрии . и антисимметричными по отношению к одно плоскости или оси (см.. выше).  [c.124]

Невырожденные колебания. Ответ на поставленный выше вопрос очень легко найти на основе развитых ранее соображений (стр. 115) в случае невырожденных колебаний. Мы видели, что полная колебательная собственная функция является симметричной или антисимметричной по отношению к известному элементу симметрии в зависимости от того, является ли сумма (т. е. сумма колебательных квантовых чисел всех колебаний, антисимметричных по отношению к данному элементу симметрии) четной или нечетной. Поэтому мы можем сразу же определить поведение полной колебательной собственной функции по отношению ко всем элементам симметрии, а следовательно, и ее тип симметрии. Достаточно ограничиться рассмотрением независимых элементов симметрии. Например, если в случае молекулы С3Н4 (мы предполагаем, что она принадлежит к точечной группе Уд) возбуждается два кванта для  [c.140]


Смотреть страницы где упоминается термин Невырожденные колебания собственные функции : [c.118]    [c.128]    [c.616]    [c.624]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.91 , c.115 , c.228 ]



ПОИСК



Колебания собственные

Молекулы, имеющие только невырожденные колебания. Молекулы, имеющие вырожденные колебания. Обобщение предыдущих результатов Типы симметрии нормальных колебаний и собственных функций

Невырожденные колебания

Собственные функции

Собственные функции собственные функции)



© 2025 Mash-xxl.info Реклама на сайте