Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальное уравнение волновое гиперболическое

Явления, происходящие в сплошных средах, таких как упругие тела, газы и жидкости, а также электромагнитные явления, как правило, приводят к дифференциальным уравнениям с частными производными [59], причем волновые. процессы и процессы переноса (диффузия, теплопередача) описываются здесь уравнениями соответственно гиперболического и параболического типов, а состояния равновесия — уравнениями эллиптического типа.  [c.9]


С точки зрения исследования распространения волновых процессов одним из существенных качеств применяемой модели динамики сплошной среды является ее гиперболичность, т. е. соответствующие дифференциальные уравнения должны принадлежать к уравнениям так называемого гиперболического типа. Физически это выражает конечность скорости распространения любого возмущения в рассматриваемой среде, что, однако, не всегда принимается во внимание при построении математических аппроксимаций. Это обстоятельство особенно важно для построения упрощенных теорий. Такие приближенные теории строятся обычно как асимптотически вырожденные по параметру (параметрам) или как некоторые аппроксимации точно поставленных задач математической теории упругости. Гиперболические аппроксимации являются, по-видимому, наиболее подходящими. Они, в отличие от параболических аппроксимаций, характеризуют процессы распространения волн с разрывами и поэтому способны описать динамические явления в областях, расположенных ближе к реальным волновым фронтам, предсказываемым трехмерной теорией. Иначе говоря, если рассматривать гиперболические и параболические аппроксимации одного порядка (имеется в виду порядок пространственно-временного дифференциального оператора), то с помощью первых можно построить теории, применимые при более высоких частотах гармонических составляющих [2.54]. Все сказанное относится к модели динамической теории упругости, которая, как известно, является гиперболической, и ее аппроксимациям— теориям стержней, пластин и оболочек. Условию гиперболичности не удовлетворяют классические тео-  [c.6]

В различных разделах физики (акустике, теории упругости, электродинамике, квантовой механике и т. д.) изучаются волновые движения в тех или иных проявлениях. Математически такие движения описываются некоторыми гиперболическими дифференциальными уравнениями. Основные свойства этих уравнений проявляются уже при изучении их простейшего представителя — волнового уравнения  [c.9]

Ключом к решению одного уравнения первого порядка, как показано в гл. 2, служит использование семейства характеристик в (ж, )-плоскости вдоль каждой характеристики уравнение в частных производных сводится к обыкновенному дифференциальному уравнению. В некоторых случаях затем удается найти решение в аналитическом виде. Но в худшем случае уравнение в частных производных сводится к системе обыкновенных дифференциальных уравнений с последующим пошаговым численным интегрированием. В любом варианте решение можно построить последовательным локальным рассмотрением малых областей не обязательно вычислять сразу все решение в целом. Это, конечно, соответствует основным идеям волнового движения за любой малый интервал времени на поведение в выбранной точке могут оказать влияние только те точки, которые расположены настолько близко, что волны от них успевают дойти вовремя. Поставим следующий вопрос возможны ли такие локальные вычисления для системы (5.1) Если они возможны, то система является гиперболической и можно сформулировать соответствующее точное определение.  [c.116]


Теперь становится понятным, почему при непосредственной локализации интегро-дифференциального уравнения (10.16) было получено уравнение (10.18)—параболическое, а не гиперболическое. Действительно, условие вуравнении переноса, достаточную точность параболического уравнения для средней концентрации.  [c.232]

При дозвуковом течении, так же как и в потоке несжимаемой жидкости, возмущение давления, плотности, температуры и др. в любой точке потока зависит от формь контура в целом. Изменения в форме контура вблизи какой-нибудь точки профиля отражаются на распределении давлений и других параметров во всем потоке-, таково основное свойство дифференциального уравнения в частных производных эллиптического типа (18). Пр( л1шеарнзованном сверхзвуковом течении изменение формы профиля вблизи одной его точки отражается на величине возмущения параметров только вдоль той линии возмущения, которая проходит через эту точку, во всем же остальном потоке такое местное изменение формы профиля не вызовет искажений в распреде-ленин возмущений. Такова особенность гиперболического (волнового) уравнения (31).  [c.289]

Рассматриваются одномерные волны (независимые переменные а и i) малых возмущений, описываемые дифференциальными уравнениями теории упругости. Находятся скорости характеристик этой системы уравнений, относящейся к гиперболическому тйпу. В рассматриваемом случае малой волновой анизотропии линейные волны и волны Римана разделяются на квазипродольные и квазипоперечные.  [c.175]

Глобальное различие в поведении общей и гамильтоновой динамической системы проявляет себя локально в особых точках. Аналогично, в теории гиперболических дифференциальных уравнений с частными производными поведение лучей и волновых фронтов в общих и в ва риационных системах существенно различны в окрестностях особых точек нестрогой гиперболичности, в то время как в остальных точках распространение волн в обоих случаях одинаково.  [c.276]


Смотреть страницы где упоминается термин Дифференциальное уравнение волновое гиперболическое : [c.354]    [c.21]    [c.4]   
Тепломассообмен (1972) -- [ c.88 , c.528 , c.533 ]



ПОИСК



Гиперболические уравнении

Уравнение волновое дифференциальное

Уравнение волновое уравнение

Уравнения волновые



© 2025 Mash-xxl.info Реклама на сайте