Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кобальта ванадием

При температуре 800° С в статических условиях в литии стойки молибден, вольфрам, ниобий, армко-железо. В загрязненном азотом литии при температуре 550° С не стойки никель и его сплавы, медь, алюминиевые сплавы [1,60]. Удовлетворительной стойкостью в литии обладают тантал, цирконий, титан. Вольфрам ограниченно стоек. Низкую стойкость в литии показали кобальт, ванадий, марганец, бериллий, хром и кремний [1,49]. В качестве защитной атмосферы при испытании образцов в литии могут применяться инертные газы гелий, неон и аргон [1,59]. Радиация на скорость коррозии конструкционных материалов в расплавленных натрии и литии почти не влияет [1,61], [1,62].  [c.51]


По исследованию влияния раздельного и комплексного легирования хромом, кремнием, алюминием, медью, кобальтом, ванадием и молибденом на механические свойства железомарганцевых сплавов большой фундаментальностью отличаются работы А. А. Баранова и И. Ф. Ткаченко [77, 78, 145, 146]. Ими установлены качественные и количественные зависимости между содержанием легирующих элементов, фазовым составом, его стабильностью при деформации и механическими свойствами. Еще раз подтверждена решающая роль фазового состава в обеспечении определенного уровня механических свойств.  [c.106]

Важнейшей инструментальной легированной сталью является быстрорежущая. Из нее изготовляют резцы, сверла, фрезы, метчики для обработки твердых металлов, жаропрочных и коррозионно-стойких сталей. Основными легирующими элементами являются хром (не менее 4%) и вольфрам (не менее 6%). Кроме этих примесей вводят кобальт, ванадий, молибден, они повышают твердость и красностойкость. Содержание углерода  [c.69]

В природе наиболее распространены железо, алюминий, медь, олово, свинец, никель, магний, хром, вольфрам, кобальт, ванадий, молибден и др. В технике большее применение находят не чистые металлы, а сплавы, т. е. соединения металлов между собой и с другими веществами. Например, сталь и чугун являются сплавами железа с углеродом, кремнием, марганцем и др. латунь — сплав меди с цинком, оловом и др., а дюралюминий — это сплав алюминия с медью, магнием, марганцем и другими ве-ществам.и.  [c.7]

Кремний. Марганец. Хром. . Никель Вольфрам Молибден Кобальт Ванадий Титан Ниобий Бор. . Алюминий Медь.  [c.49]

Сверла из быстрорежущей стали с добавкой кобальта, ванадия и молибдена лучше затачивать кругами марки М несколько меньшей твердости (М3—СМ1), работающими при скорости 16—20 м сек.  [c.54]

Кроме перечисленных промышленное применение имеют также хром, никель, марганец, молибден, кобальт, ванадий, вольфрам, цирконий, тантал, ниобий, рений, индий, серебро, платина, золото, германий, селен, теллур.  [c.11]

Решая проблему высокопрочных сталей, советские ученые шли оригинальным путем, правильность которого подтвердил многолетний опыт эксплуатации самолетов. Сотрудники ВИАМа четко представляли, что сырьевые ресурсы страны оказывают огромное влияние на развитие авиационной техники. В СССР имелись все виды сырья. Однако по ряду металлов (молибден, никель, вольфрам, кобальт, ванадий, олово, медь) положение в 30-х годах было очень напряженным. Поэтому разработка на основе отечественного сырья материалов, особенно конструкционных сталей и сплавов, освобождающих нашу страну от иностранной зависимости, от необходимости импорта дефицитных металлов, была одним из главнейших направлений в работах ВИАМа. Ученые доказали возможность использования кремния и марганца в качестве легирующих элементов для сталей с высокими механическими свойствами, не уступающими хромоникелевым.  [c.336]


Кобальт Ванадий Рений Кремний  [c.19]

Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]

Быстрорежущие стали маркируют буквой Р. Следующая за ней цифра указывает среднее содержание главного легирующего элемента быстрорежущей стали — вольфрама (в процентах). Среднее содержание ванадия в стали обозначают цифрой, проставляемой за буквой Ф, кобальта — цифрой за буквой К и т. д. Среднее содержание хрома в большинстве быстрорежущих сталей составляет  [c.296]

В обозначении марки первые две цифры указывают среднее содержание углерода в сотых долях процента. Буквы за цифрами обозначают С — кремний, Г — марганец, Н — никель, М — молибден, П — фосфор, X — хром, К — кобальт, Т — титан, Ю — алюминий, Д — медь, В — вольфрам, Ф — ванадий, Р — бор, А — азот, Н — ниобий, Ц — цирконий.  [c.13]

Химические элементы в сталях условно обозначаются следующим образом алюминий (А1) — Ю, азот (А) — А (только в высоколегированных сталях), бор (В) — Р, ванадий (V) — Ф, вольфрам ( ) — В, кремний (51) — С, кобальт (Со) — К, марганец (Мп) — Г, медь (Си) — Д, молибден (Мо) — М, никель (N1) — Н, ниобий (N8) — Б, титан (Т1) — Т, хром (Сг) — X, цирконий (2г) — Ц.  [c.48]

Легирующие элементы образуют с железом твердые растворы и химические соединения. Твердые растворы замещения неограниченной растворимости непосредственно после затвердевания образуют с железом никель и кобальт и металлы группы платины, а с а-железом -только хром и ванадий. Характерная диаграмма для систем Fe - Сг показана на рис. 21.  [c.45]

Для повышения температуры полиморфного превращения а-ти-тана вводят алюминий, кислород, азот и углерод для понижения температуры полиморфного превращения уЗ-титана добавляют цирконий, ниобий, ванадий, молибден, марганец, железо, хром, кобальт и др.  [c.298]

Основными техническими материалами данной группы являются сплавы на основе кобальта, ванадия и железа, например, викаллой. Высокие магнитные свойства сплава реализуются после горячей прокатки, термической обработки, холодной прокатки с большим обжатием и отпуска. В направлении прокатки свойства викаллоя I Вг = 0,9 тл Яс = 24 /са/ж (ВН)тах = 8 кдж1м . Ковкие сплавы выпускают" главным образом в виде ленты и проволоки. Эти сплавы применяют для изготовления стрелок компасов, подвесных магнитов электроизмерительных приборов, спидометров, а также для магнитной записи. Ленту из викаллоя используют также для плоских магнитов небольшого размера или сложной конфигурации например, из штампованных заготовок можно набрать пакет индуктора ротора гистере-зисного синхронного двигателя.  [c.268]

Кобальт Ванадий Рений Кремиий  [c.19]

Сплавы, деформируемые в холодном состоянии. К этой группе магнитотвердых материалов относятся сплавы следующих систем медь — никель— железо, медь— никель — кобал ьт, железо — марганец, легированные алюминием или титаном, а также сплавы железо — кобальт — ванадий — викалой (рис. 28.104, табл. 28.42, 28.43).  [c.561]

Ко второй группе относятся сплавы медь-ни-кель-железо медь-никель-кобальт железо-марганец, легированные алюминием или титаном, а также сплавы же-лезо-кобальт-ванадий. Имеется ряд сплавов медь-никель-железо, лучшим из которых по свойствам является сплав к у н и ф е. Получили распространение сплавы железо-кобальт-ванадий, называемые в и кал ой. Он имеет Яс= 300 -ь500 э = 6- 10 кгс. Выпускается в виде проволоки и в листах.  [c.313]

За последнее двадцатипятилетие советскими металлургами и учеными созданы такие материалы для резцов, которые не содержат в себе дорогих легирующих элементов (вольфрама, титана, кобальта, ванадия) и в то же время характеризуются хорошими режущими свойствами. Это так называемые минералокерамические материалы (термокорунд), выпускаемые в виде пластинок белого цвета, напо.минающих мрамор. Эти пластинки изготовляют из глинозема (окиси алюминия), которого очень много в природе и который очень дешев. Керамические пластинки отличаются более высокой твердостью по сравнению с твердыми сплавами и сохраняют эту твердость при нагреве до 1200° С, что дает возможность резать ими металлы с высокими скоростями резания. Однако по сравнению с твердыми сплавами минералокерамика имеет более низкие механические свойства — повышенную хрупкость и плохую сопротивляемость изгибающим нагрузкам. Поэтому резцы с керамическими пластинками целесообразно применять лишь при полу-чистовом и чистовом точении при безударной нагрузке.  [c.29]


Сочетание высокой твердости эльбора с теплостойкостью, в два раза превосходящей теплостойкость алмаза, и химической инертностью к железу и сплавам на его основе делает эльбор незаменимым при обработке высокотвердых сталей и сплавов, легированных вольфрамом, молибденом, кобальтом, ванадием, которые плохо или совсем не обрабатываются обычными абразивными и алмазными инструментами. Инструмент из эльбора успешно применяется при чистовом шлифовании и заточке инструментов из быстрорежущих сталей, при чистовом тонком шлифовании прецизионных деталей из жаропрочных, нержавеющих и высоколегированных конструкционных сталей HR 64—66), а также при шлифовании деталей из материалов, чувствительных к термическим ударам (литые магниты). Большой эффект достигается при чистовом и тонком шлифовании инструментом из эльбора массовых деталей на станках, работающих в автоматическом и полуавтоматическом циклах (малые отверстия приборных подшипников), при шлифовании направляющих станков и ходовых винтов, при обработке профилей резьбы метчиков, калибров, ходовых винтов, при доводке рабочих поверхностей деталей подшипников из жаропрочной стали ЭИ347 и др.  [c.12]

Для расширения области замены вольфрамосодержащих сталей, а также повышения производительности обработки, маловольфрамовые стали легируют дополнительными элементами, такими, как кобальт, ванадий и др. В нашей стране разработаны и применяют специальные стали, которые позволяют расширить область замены стали Р6М5, а также в ряде случаев повысить скорость резания. Однако эти стали обладают худшей технологичностью (например, хуже шлифуются и куются), поэтому их более рационально применять для инструментов простой конфигурации. Рекомендуется при их шлифовании и заточке применять эльборовые шлифовальные круги.  [c.35]

Выделение и укрупнение (коагуляцию) карбидов можно задержать путем введения в сталь лигирующих элеменшв, Образующих специальный карбид. Теплостойкость создается легированием стали карбидообразующими элементами при введеняя их в сталь в таком количестве, когда они связывают почти весь углерод в специальный карбид. Специфичностью этих карбидов является то, что они выделяются из мартенсита и коагулируют при более высоких температурах (свыше 500—600 °С). Карбидообразующими элементами являются хром, вольфрам, молибден, кобальт, ванадий и др.  [c.214]

Совместная работа институтов ЦНИПТМАШ, ВНИИАШ и Московского химико-технологического (МХТИ) им. Менделеева была направлена на разработку минералокерамики, как режущего вещества, исходя прежде всего из стремления устранить дорогостоящие дефицитные металлы — вольфрам, кобальт, ванадий.  [c.164]

Некотррые элементы (хром, никель, молибден), способствующие прокаливаемости стали, увеличивают глубину закаленного цементованного слоя, измеренную по излому, даже если они несколько и снижают глубину проникновения в сталь углерода. Кремний, алюминий, кобальт, ванадий (свыше 1,5%) и титан уменьшают глубину закаленного цементованного слоя.  [c.605]

Поглогцением называется процесс, при котором неоднородности волокна поглощают оптическую энергию и преобразуют ее в тепло. При этом свет становится более тусклым. Области существенного затухания сигнала волокна связаны с молекулами воды и большим поглощением света гидроксиль-ными молекулами. К другим неоднородностям, обусловливающим поглощение, относятся ионы железа, меди, кобальта, ванадия и хрома. Для обеспечения низких потерь производители волокна должны поддерживать концентрацию этих ионов на уровне одной миллиардной. Современная технология производства волокна позволяет добиваться этого в контролируемых условиях особо чистого окружения. Поэтому проблема поглощения света в волокне не столь важна, как несколько лет назад.  [c.70]

Принцип обозначения химического состава наплавленного металла прежний — углерод дан в сотых долях процента, среднее содержашю основных химических элементов указано с точностью до 1% после следующих буквенных символов А — азот, Б - ниобий, В — вольфрам, Г — марганец, К — кобальт, М — молибден, II --- иике.ль, Р — бор, С —- кремний, Т — титан, Ф — ванадий, X — хром. Показатели твердости наплавленного металла в зависимости от типа электрода даны либо в исходном поело наплавки состоянии, либо после те])мообработки.  [c.113]

Все быстрорежущие стали обозначают буквой Р (рапид — скорость), цифры после этой буквы показывают содержание основного легирующего элемента — вольфрама, а для поль-фрамомолибденовых сталей и содержание молибдена. Прп высоком содержании ванадия среднее содержание его также отмечается в марочном обозначении цифрой после буквы Ф, а содержание кобальта буквой К и соответствующими цифрами. Хрома во всех сталях содержится около 4%, а углб рода—  [c.421]

Водород также растворяется в большинстве металлов. Металлы, способные растворять водород, можно разделить на две группы, К первой группе относятся металлы, не имеющие химических соединений с водородом (железо, никель, кобальт, медьидр.). Конторой группе относятся металлыд(титан, цирконий, ванадий, ниобий, тантал, паладий, редкоземельные элементы и др.), образующие с водородом химические соединения, которые называются гидридами. Водород очень вредная примесь, так как является причиной пор, микро- и макротрещин в шве и в зоне термического влияния.  [c.27]


Смотреть страницы где упоминается термин Кобальта ванадием : [c.835]    [c.99]    [c.1016]    [c.32]    [c.269]    [c.82]    [c.415]    [c.275]    [c.343]    [c.363]    [c.311]    [c.45]    [c.155]    [c.386]    [c.329]    [c.805]    [c.422]    [c.256]    [c.298]    [c.201]    [c.79]   
Гальванотехника справочник (1987) -- [ c.341 ]



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Кобальт

Кобальтит



© 2025 Mash-xxl.info Реклама на сайте