Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория марковских процессов случайные — Функции корреляционные

Теория — см. Теория марковских процессов - случайные — Функции корреляционные 523, 524  [c.561]

В предыдущих параграфах при исследовании случайных колебаний использовались только два первых момента случайных функций (математические ожидания и корреляционные функции). Однако не все задачи могут быть решены методами корреляционной теории. В прикладных задачах, когда требуется решать нелинейные уравнения, определить все вероятностные характеристики методами корреляционной теории нельзя. Кроме того, решение ряда конкретных задач требует знания не только вероятностных характеристик, но и законов распределения выхода. Такие задачи решаются методами теории Марковских процессов [7, 42].  [c.85]


Таким образом, спектральный метод анализа нелинейных стохастических систем существенно отличается от метода момент-ных соотношений, основанных на теории марковских процессов. Разрешающие уравнения спектрального метода (4.31), (4.41), (4.47) выведены для произвольно го вида спектральной плотности воздействия. Это позволяет не вводить предположение о дробно-рациональном характере функции 5,(<о). Далее, метод спектральных представлений наряду с моментами фазовых переменных позволяет исследовать двухточечные характеристики случайных процессов, т. е. спектральные плотности и корреляционные функции.  [c.98]

Метод усреднения. Этот метод использует известные идеи Крылова-Боголюбова в теории нелинейных колебаний. Если исследуемый колебательный процесс имеет узкополосный спектр, то уравнения движения могут быть усреднены за период колебаний. Затем применяют либо корреляционную теорию, либо теорию марковских процессов. Подробное изложение метода усреднения применительно к случайным функциям содержится в монографии [27, где рассмотрено большое количество нелинейных и параметрических задач.  [c.540]

В предьщущих разделах бьши рассмотрены только первые два момента теории случайных функций — математическое ожидание и корреляционная функция. К сожалению, далеко не все прикладные задачи могут быть решены методами корреляционной теории - например, часто возникающая при анализе динамических систем задача об определении вероятности превышения ординаты случайной функции заданных значений. Эти задачи можно решить, если ограничиться процессами, обладающими некоторыми специальными свойствами, но представляющими практический интерес. В предьщущих параграфах методы корреляционной теории использовались для анализа систем с линейной связью между входом и выходом. В этом случае корреляционная теория дает возможность получить вероятностные характеристики решения дифференциальных уравнений, если известны вероятностные характеристики возмущений. Получить решение нелинейных уравнений методами корреляционной теории нельзя. Однако, если ограничиться процессами, обладающими специальными свойствами, можно получить решение и для нелинейных задач статистической динамики. К таким процессам относят марковские процессы, для полной характеристики которых достаточно знать только двумерные законы распределения.  [c.123]


Предположим для определенности, что спектральная плотность стационарного случайного воздействия q t) является дробно-радиональной функцией. Тогда на основании уравнения движения типа (1.88) можно вывести моментные соотношения любого порядка. Для этого можно использовать уравнения теории марковских процессов (см. 1,5] или другие классические методы. В третьей главе данной книги показано применение корреляционного и спектрального методов вывода моментных соотношений в задачах с произвольными нелинейными функциями, в том числе неаналитическими.  [c.35]

Таким образом, особенности внешней среды и самой системы приводят к тому, что численность отдельных популяций и биологических сообществ в целом испытывает случайные флуктуации, т.е., вообще говоря, представляет случайный процесс. Важнейшие свойства этого процесса - средние значения, дисперсия колебаний (интенсивность флуктуаций) определяются характером возмущений — их средними, интенсивностью и временем корреляции. Если характерное время возмущений значительно меньше собственного времени самой системы (популяции или сообщества), к анализу динамики системы можно применить достаточно развитый аппарат теории марковских процессов, при этом идеализированной моделью возмущениГ является белый шум, корреляционная функция которого - 5-функция. В качестве характерного времени системы может выступать, например, среднее время жизни особей в популяции, период циклов размножения, характерный период собствен-  [c.299]


Смотреть страницы где упоминается термин Теория марковских процессов случайные — Функции корреляционные : [c.540]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.523 , c.524 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.523 , c.524 ]



ПОИСК



Корреляционная функция

Процесс марковский

Процессы Функции корреляционные

Случайность

Случайные процессы

Случайные процессы марковские

Теория марковских процессов

Теория марковских процессов случайные стационарные Плотности спектральные 524529 — Функции корреляционные

Теория процесса

Теория функция

Функции случайные

Функция процесса



© 2025 Mash-xxl.info Реклама на сайте