Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки вращения ортотропные многослойные

Основные соотношения уточненной теории осесимметричных многослойных анизотропных оболочек вращения построены. Учет анизотропии значительно усложняет решение задачи, поскольку в зтом случае приходится интегрировать полную систему нелинейных дифференциальных уравнений двенадцатого порядка, в то время как расчет осесимметричных ортотропных оболочек приводит к решению укороченной системы дифференциальных уравнений восьмого порядка.  [c.45]


Сосуды, аппараты и машины с точки зрения строительной механики представляют собой сопряжение элементов стержней, пластин и оболочек. Сосуды и аппараты из стеклопластиков отличаются тем выгодным для них свойством, что структура материала в них формируется в процессе изготовления, поэтому деформационные и прочностные свойства наилучшим образом соответствуют геометрической форме и нагрузке. Следовательно, возможно изготовление конструкций оптимальной формы, требующее, однако, применения дорогостоящего технологического оборудования. С другой стороны, возможно изготовление сосудов и аппаратов вручную или с использованием недорогих технических средств. По виду стеклонаполнителя (жгут, холст, ткань) и условиям изготовления сосудов, аппаратов и их элементов можно выделить широкий класс ортотропных оболочек вращения. При этом возможны два варианта постановки задачи расчета и их решения. В первом случае оболочку рассматривают как многослойную с различными упругими константами стеклонаполнителя и связующего между его слоями. Этот вариант расчета сложен в технических приложениях и поэтому здесь не изложен. Во втором случае оболочку рассматривают как однородную анизотропную с приведенными упругими константа-  [c.5]

Даны расчеты многожильных и плоских пружин на изгиб, многослойных толстостенных цилиндров, конических панелей при воздействии нормального давления, конструктивно-ортотропных оболочек вращения, пологих сферических оболочек, прочности пластин двухрядных цепей, прочности и жесткости сильфонного компенсатора высокого давления и др.  [c.2]

Таким образом, задача о напряженном состоянии несимметрично собранной многослойной ортотропной оболочки вращения при предположении (7.2) свелась к решению линейного дифференциального уравнения (7.3). Имея значения функции о, с помощью (7.4) можно легко определить значения основных искомых функций W ж V, через которые выражены все расчетные величины задачи.  [c.263]

Глава 4 посвящена изучению аналитическими и численными методами локальной термоустойчивости ортотропных цилиндрических и сферических оболочек. В ней также рассмотрено аналитическое определение перемещений и напряжений в ортотропных оболочках вращения, испытывающих осесимметричный нагрев, влияние термоциклирования на предельные нагрузки при внешнем давлении на примере углеродных оболочек и представлен алгоритм расчета теплофизических характеристик многослойных КМ.  [c.8]


Численному исследованию геометрически нелинейных слоистых ортотропных оболочек в классической постановке посвящены работа [1.16, 7.4]. Для решения нормальной системы шести обыкновенных дифференциальных уравнений в монографии [ 1.16] использован процесс последовательных приближений, основанный на методе квазилинеаризации. Обобщение упомянутых алгоритмов на оболочки вращения типа Тимошенко дано в работах [73, 1.15], где обсуждаются ортотропные оболочки однородные [73] и многослойные [ 1.15]. В математическом плане зти задачи могут быть также сведены к инто-р1фованию нормальной системы шести нелинейных дифференциальных уравнений,  [c.127]

Расчетные фрагменты первого типа представляют собой тонкостенные оболочки вращения — оболочечные элементы. Каждый оболочечный элемент может быть многослойным с изотропными, ортотропными или конструктивно-ортотропными слоями (рис. 8.3), с постоянными вдоль параллелей и переменными вдоль меридиана толщиной, а также механическими и теплофизическими характеристиками. На геометрию меридиана и толщины слоев оболочечных элементов никаких ограничений (кроме условия тонкостен-ности) не накладываем.  [c.138]

Рассмотрим многослойную оболочку вращения. Координаты аь 2 направим вдоль меридиана и параллели. Материалы слоев пусть будут ортотропными с осями упругой симметрии, совпадающими с направлениями координатных линий. В этом случае при получении разрешающих уравнений можно пользоваться соотношениями, записанными для амплитудных значений л-й гармоники разложений функции в ряды Фурье по угловой координате 2. Ниже приводятся процедуры получения канонических систем разрешающих дифференциальных уравнений для решения задач статики лмногослойных оболочек вращения общего вида.  [c.216]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]


Смотреть страницы где упоминается термин Оболочки вращения ортотропные многослойные : [c.458]    [c.128]    [c.280]   
Прочность устойчивость колебания Том 2 (1968) -- [ c.167 ]



ПОИСК



Л многослойное

Оболочка многослойная

Оболочки вращения

Оболочки вращения ортотропные многослойные асимптотическое

Теория оболочек вращения анизотропных ортотропных многослойных

Теория оболочек вращения анизотропных ортотропных многослойных безмоментная



© 2025 Mash-xxl.info Реклама на сайте