Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Индуктивные Характеристики

Для современных источников питания дуги переменного тока падающую внешнюю характеристику получают путем искусственного увеличения индуктивного сопротивления.  [c.131]

Сварочные трансформаторы, как правило, имеют падающую внешнюю характеристику, их используют для дуговой ручной сварки и автоматической сварки под флюсом. Широко применяют трансформаторы с увеличенным магнитным рассеянием и подвижной вторичной обмоткой (типов тс и ТД). В этих трансформаторах (рис. 5.5, о) первичная I и вторичная 2 обмотки раздвинуты относительно друг друга, что обусловливает их повышенное индуктивное сопротивление вследствие появления магнитных потоков рассеяния.  [c.188]


Сварочные выпрямители состоят из трехфазного понижающего трансформатора /, выпрямительного блока 2, собранного из кремниевых полупроводниковых вентилей по трехфазной мостовой схеме (рис. 5.6). Падающая внешняя характеристика выпрямителя обеспечивается повышенным индуктивным сопротивлением понижающего трансформатора, у которого первичная и вторичная обмотки раздвинуты и размещены на разных концах магнитопровода (тип ВД). Плавное регулирование тока достигается перемещением подвижной первичной обмотки.  [c.189]

Для иллюстрации изложенного рассмотрим регулируемый по напряжению синхронный генератор. Переходные процессы генератора описываются уравнениями Парка — Горева при постоянной частоте вращения. Насыщение учитывается по продольной оси с помощью характеристики холостого хода. Система регулирования напряжения включает возбудитель и быстродействующий транзисторный регулятор. Возбудитель описывается апериодическим звеном с нелинейным коэффициентом усиления, учитывающим магнитное насыщение возбудителя. Уравнения регулятора включают переменные коэффициенты, определяемые с помощью нелинейных статических характеристик. Нагрузка генератора является активно-индуктивной и описывается уравнениями в осях d, q.  [c.98]

При выводе этого уравнения не учтены малые параметры — индуктивность контура и инертность газового разряда. Сила тока i через неоновую лампу определяется напряжением и и статической характеристикой i = ф (и).  [c.232]

Это свойство нелинейных систем используется в умножителях частоты, в которых за счет соответственно подобранной нелинейности системы при гармоническом (или близком к нему) воздействии возникают колебания значительной амплитуды с частотами, кратными частоте воздействия. Подобные умножители частоты с катушками индуктивности с ферромагнитными сердечниками, конденсаторами с сегнетоэлектрическими диэлектриками или другими нелинейными элементами позволяют производить энергетически эффективное умножение частоты в 3, 5 и более раз в одном элементе. Из нечетности функций, аппроксимирующих нелинейные характеристики соответствующих катушек и конденсаторов, следует, что в указанных устройствах эффективное умножение частоты возможно лишь в нечетное число раз.  [c.107]

Использование больших участков нелинейной характеристики привело бы к необходимости введения в аппроксимирующий полином членов с более высокими степенями, и тогда имели бы место отчетливо выраженные резонансные эф( екты для т = 5, 7 и т. д. При этом антисимметрия характеристики намагничения соответствует присутствию в аппроксимирующем полиноме лишь нечетных степеней и, следовательно, возможны резонансные процессы только на нечетных гармониках воздействующей силы. Эти же свойства нелинейной характеристики приводят к тому, что в результате появления в системе вынужденных колебаний с частотой р возникает периодическое изменение ее индуктивности с частотой 2р.  [c.126]


Аналогичные автоколебательные процессы возможны и в системах с неоднозначной зависимостью напряжения от тока (вольт-амперная характеристика Л -типа), например в системе, изображенной на рис. 5.11. В этой системе возможно возбуждение и поддержание автоколебаний со скачками напряжения. Условием скачка в данном случае будет непрерывность тока, т. е. непрерывность изменения величины магнитного потока в индуктивности Ь, определяющей запас энергии в системе. В момент скачка =  [c.193]

Общая характеристика. Вихретоковые методы основаны на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте контроля. Плотность вихревых токов в объекте зависит от геометрических и электромагнитных параметров объекта, а также от взаимного расположения измерительного вихретокового преобразователя (ВТП) и объекта. В качестве преобразователя используют обычно индуктивные катушки (одну или несколько). Синусоидальный (или импульсный) ток, действующий в катушках ВТП, создает электромагнитное поле, которое возбуждает вихревые токи в электропроводящем объекте. Электромагнитное поле вихревых токов воздействует на катушки преобразователя, наводя в них ЭДС или изменяя их полное электрическое сопротивление. Регистрируя напряжение на зажимах катушки или их сопротивление, получают информацию о свойствах объекта и о положении преобразователя относительно него.  [c.82]

Важной характеристикой витка в этой теории является его индуктивность  [c.22]

На рис. 1 показана блок-схема созданного в ИМАШе экспериментального образца машины, производящей измерения в полярных координатах. Измеряемое изделие 1 устанавливают на поворотный стол 2 и наконечник измерительной головки 3 вводят в соприкосновение с изделием. Затем включают питание приводов и начинается обход изделия. Сигнал с выхода блока индуктивного преобразователя 4, встроенного в измерительную головку, поступает на привод 5 линейной координаты и одновременно через блок оптимального управления 6 на привод круговой координаты 7. Привод 5 вращает ходовой винт 8 и перемещает каретку 9, стремясь привести к нулю сигнал рассогласования с измерительной головки. Поворотный стол от своего привода вращается непрерывно в одном направлении, и наконечник измерительной головки обходит весь проверяемый контур. Информация о положении поворотного стола с датчика Ои о положении каретки с датчика 22, связанного с ходовым винтом, поступает на блок регистрации информации 12, ъ составе которого может быть пишущая машинка или перфоратор. Данные перфоратора могут быть непосредственно использованы в ЭВМ (блок 13) для получения таких характеристик изделий, как, например, координаты центров тяжести сечений турбинных лопаток.  [c.164]

В зависимости от характеристики электромагнитного поля и частоты, используемой в приборах, применяются следующие методы измерения толщины покрытий индукционный, индуктивный и вихревых токов.  [c.36]

В табл. 6 приведены основные технические характеристики индуктивных датчиков некоторых зарубежных фирм.  [c.360]

Характеристики индуктивных приборов  [c.94]

Технические характеристики индуктивных преобразователей завода Калибр  [c.98]

По принципу действия кругломеры можно разделить на индуктивные и пневматические. Краткие технические характеристики кругло-меров, выпускаемых рядом стран, приведены в табл. 43 и 44.  [c.185]

Рис. 55. Характеристики индуктивных датчиков а — е изменяющимся воздушным зазором б — с изменяющейся площадью воздушного зазора . Рис. 55. <a href="/info/257019">Характеристики индуктивных датчиков</a> а — е изменяющимся <a href="/info/270245">воздушным зазором</a> б — с изменяющейся площадью воздушного зазора .

Характеристика индуктивного датчика с переменным зазором L = = / (б) приведена на рис. 55, а, а датчика с переменной площадью  [c.104]

Индуктивные датчики с переменной площадью воздушного зазора имеют линейную характеристику L — f (So) (см. рис. 55, б), но невысокую чувствительность, используются для измерения больших перемещений. Дифференциальная схема данного типа датчиков (рис. 56, S) обладает аналогичными преимуществами.  [c.106]

Техническая характеристика индуктивного датчика  [c.112]

В качестве датчика в этих автоматах использовался дифференциальный индуктивный датчик [2], а на выходе измерительной системы — самописец, фиксирующий отклонение размера. Достоинством индуктивных датчиков является высокая чувствительность, однако трудность получения линейной характеристики и влияние инерционности на результат показания несколько ограничивают их использование.  [c.88]

Измерения крутящих моментов чаще всего реализуются ИПП тензометрического и индуктивного типов, а также магнитоупругими датчиками. Наиболее универсальными по применению при проведении операций контроля и диагностирования ТО и ПР являются ИПП первого типа в силу меньшей зависимости конструктивных и метрологических характеристик от особенностей объекта.  [c.165]

Основным недостатком является сложная электрическая схема, обусловленная требованием скачкообразной характеристики что необходимо для срабатывания системы при достижении заданного размера. Более рационально применение индуктивных систем для связи измерительного щупа с исполнительными органами, когда необходимо осуществлять непрерывное измерение, поскольку в этом случае плавность характеристики обеспечивается простой схемой. Поэтому приспособления с индуктивными системами применяются, главным образом, для наблюдения за измерением размеров в случаях непрерывного процесса изготовления, например, для контроля толщины ленты во время прокатки (фиг. 106).  [c.215]

Разрядники простейшей конструкции — роговые —имеют неудовлетворительную характеристику вследствие большой величины и непостоянства пробивного напряжения. Иногда применяются они в сочетании с индуктивной катушкой, сглаживающей фронт волны перенапряжения.  [c.489]

При работе трансформатора основной магнитный поток Фо, создаваемый первичной и вторичной обмотками, замыкается через магннтопровод 3. Часть магнитного потока ответвляется и замыкается вокруг обмоток через воздушное пространство, образуя потоки рассеяния и s2- Потоки рассеяния индуктируют в обмотках электродвижущую силу, противоположную основному напряжению. С увеличением сварочного тока увеличиваются потоки рассеяния и, следовательно, возрастает индуктивное сопротивление вторичной обмотки, что и создает внешнюю падающую характеристику трансформатора.  [c.189]

Применение вспомогательных поверхностей. Повышению аэродинамического качества летательного аппарата, улучшению характеристик его устойчивости и управляемости спссобствует применение некоторых вспомогательных поверхностей на отдельных элементах конструкции. К числу их относятся аэродинамические гребни (рис. 1.12.2), представ.яяющие собой небольшие выступы на верхней поверхности крыла, параллельные продольной оси летательного аппарата. На каждой консоли располагается несколько таких гребней. Их назначение состоит в том, чтобы воспрепятствовать перетеканию пограничного слоя вдоль размаха крыла и уменьшить срыв потока с его боковых кромок. Этой же цели служат и концевые шайбы (рис. 1.12.2), установленные у этих кромок. Как и гребни, они способствуют улучшению обтекания, что проявляется в меньшем воздействии на крыло концевых вихрей. В результате снижается индуктивное сопротивление, возрастает аэродинамическое качество.  [c.105]

Первыми установками индукционного нагрева были индукционные плавильные печи с магнитопроводами. Опытная печь с открытым горизонтальным каналом была построена в Англии в 1887 г. Ферранти, а первая промышленная печь того же типа — в Швеции Кьеллином. Эти печи, применявшиеся для переплавки стали, обладали плохими энергетическими характеристиками, в частности относительно большой индуктивностью рассеяния, что заставляло применять пониженную частоту, получаемую от специального генератора.  [c.4]

Сварочные трансформаторы — это понижающие трансформаторы (вторичное напряжение U. = 60 ч- 80 В), падающая характеристика которых создается за счет повышенного магнитного рассеяния или включения в сварочную цепь индуктивного сопротивления (дросселя). Электрическая схема сварочного трансформатора с повышенным магнитным рассеянием представлена на рис. 2.10, а. Катушки первичной / и вторичной 2 обмоток расположены попарно на обоих стержнях сердечника трансформатора 3. Первичная обмотка неподвижна и закреплена в нижней части сердечника, вторичная перемещается по нему с помощью винтового механизма. При прохождении тока по обмоткам возникают магнитные потоки основной Фт, создаваемый намагничивающей силой обмоток 1 и 2, и потоки рассеяния этих же обмоток Фр1 и Фр , дающие суммарный ноток Фр, который наводит в трансформаторе реактивную ЭДС, определяющую его индуктивное сопротивление XПри рабочей нагрузке трансформатора его ЭДС уравновешивается падением напряжения дуги U, и реактивной ЭДС Ер, а при коротком замыкании — t/д /кяХ следовательно, такой ИП имеет падающую характеристику. Сварочный ток регулируется изменением расстояния между обмотками / и 2 (при его увеличении поток Ф растет, а сварочный ток уменьшается).  [c.53]

Оценка скорости коррозии по характеристикам псевдо-индуктивного впекгрохимического импеданса 39, 301  [c.40]

Магнитное сопротивление. Является обобщающей характеристикой, учитывающей магнитную проницаемость материала образца и его разрыхление, возникновение и развитие усталостных трещин [12. с. 121—1123]. По результатам измерений величины индуктивности катушки получены формулы для определения геометрических размеров усталостной трещины. Индуктивность катушки определялась на частоте 1000 Гц с помощью низкочастотного измерителя Е7-2 и автрматического моста Р-69,1 переменного тока с цифровым отсчетом и выходом на цифропечатающее устройство или перфоратор. Исследование магнитного сопротивления дает возможность в процессе испытания проследить стадии накопления усталостных повреждений, зафиксировать момент возникновения трещины и ха- рактер ее развития.  [c.42]


Если происходит длительное или только кратковременное (при замыкании на землю) соединение с заземлителями, то потенциал заземлителей передается как напряжение прикосновения на трубопровод и распространяется далее. С увеличением расстояния напряжение прикосновения убывает более или менее быстро в зависимости от характеристик трубопровода. Закон изменения идентичен наблюдаемому для напряжения прикосновения Ua за пределами зоны сближения при индуктивном воздействии (см. ниже рие. 23.11) при этом для It/Bmaxi следует принимать потенциал заземлителя. Обычно трубопровод имеет катодную защиту в таком случае он электрически изолирован от заземлителей при помощи изолирующего фланца на границе заводской территории яли поблизости от ввода в здание. В первом случае трубопровод может быть соединен на заводской территории с заземлительной системой. Распространение напряжения наружу ввиду наличия изолирующего фланца невозможно. Во втором случае могут потребоваться дополнительные мероприятия для предотвращения случайных соединений с системой заземлителей или с заземленными частями установки и для недопущения слишком высоких напряжений прикосновения на заводской территории.  [c.429]

Индукционная структуроскопия, помогая тем и другим, позволяет проконтролировать состояние и качество структуры материала без его разрушения, оценить механические характеристики, например прочность, прогнозировать состояние материала при эксплуатации машин. Каждая из этих проблем очень сложна, хотя бы потому, что электрические и магнитные свойства сплавов зависят от свойств фаз, величины кристаллов, их формы, взаимного расположения, количества вакансий и дислокаций. Особенности метода вихревых токов накладывают свои ограничения на методику испытаний. Вихревые токи наводятся с помощью катушек индуктивности, питающихся током частотой от нескольких герц до десяти и более мегагерц. Катушки не только наводят вихревые токи, но и регистрируют изменения магнитного поля вихревых токов, получая информацию об изменении электромагнитных характеристик и, следовательно, структуры материала. Расшифровка этой информации затруднена тем, что она содержит также сведения о зазоре между датчиком и контролируемым материалом, кривизне контролируемой поверхности, близости датчика к краю детали, ее толщине и т. д.  [c.6]

В отличие от возбуждения и приема ультразвука с помощью пьезодатчико,в при ЭМА способе возбуждения и Приама преобразование электромагнитной энергии в звуковую и обратно происходит на поверхности контролируемого изделия. Потери мощности сигнала при таком преобразовании по мере ее передачи от генератора к нагрузке обусловлены рядом причин. Установлено, что при возбуждении ультразвука ЭМА методом с помощью контура ударного возбуждения, если индуктивным элементом или частью его служит высокочастотная катушка датчика, его комплексное сопротивление есть функция зазора [1], что необходимо учитывать, рассматривая вопрос о согласовании. Вследствие этого характеристики датчика зависят от условий включения их в устройствах и являются параметрами системы генератор — внешняя цепь. КрО)ме того, имеются источники потерь в самом датчике, а также джоулевы потери в соединительных электрических элементах. Следовательно, для получения требуемых характеристик ЭМА датчиков в устройствах необходимо определенным образом выбирать параметры датчиков в целом на стадии изготовления ЭМА датчиков и сборки ультразвуковых систем. С другой стороны, если параметры ЭМА датчиков уже заданы, характеристики ультразвуковых устройств можно варьировать только с помощью изменения условий включения их в радиотракт.  [c.119]

Индуктивно макронеоднородные тела можно в свою очередь разбить на три типа. Это, во-первых, тела с непрерывной неоднородностью, в которых механические характеристики меняются при переходе от одной точки к другой. Примерами таких сред являются конструкции, находящиеся под воздействием неравномерного высокотемпературного поля. Второй тип индуктивно неоднородных тел — среды, составленные из отдельных частей, каждая из которых однородна, т. е. механические характеристики в ней постоянны. В литературе среды такого вида называются обычно слоистыми, кусочно-однородными или кусочно-неоднородными. Число отдельных слоев с различными механическими свойствами может быть любым. Третий тип — так называемые разномодульныё тела, которые выполнены из материалов, имеющих различный модуль упругости при сжатии и растяжении (см. [3, 91] и др.).  [c.9]

Следует отметить, что в современной литературе отсутствует общепринятая терминология в отношении индуктивно макронеоднородных тел. Так, в коллективной монографии [67] под неоднородными понимаются слоистые среды, а акад. Н. И. Мусхелишвили в известной монографии [100] называет эти тела составными. В гл. Vlil этой же монографии для характеристики сред с включениями применяется термин кусочно-однород-ные . Трехтомный справочник [124] неоднородными называет тела с непрерывно изменяющимися механическими характеристиками. С. Г. Лехницкий использует термин непрерывная неоднородность [77]. Число подобных примеров можно значительно увеличить. Создавшееся положение приводит к тому, что в каждом отдельном случае авторы вынуждены пояснять смысл, вкладываемый ими в понятие неоднородное тело .  [c.9]

Принпипиальная схема другого индуктивного преобразователя показана на рис. 42. Такие преобразователи выпускаются для осевого и бокового действия. Технические характеристики индуктивных преобразователей завода Калибр приведены в табл. 25.  [c.96]


Смотреть страницы где упоминается термин Индуктивные Характеристики : [c.125]    [c.59]    [c.31]    [c.76]    [c.82]    [c.253]    [c.25]    [c.343]    [c.631]    [c.164]    [c.539]    [c.285]    [c.232]    [c.202]    [c.442]   
Справочник машиностроителя Том 4 (1956) -- [ c.30 ]



ПОИСК



107 — Характеристики индуктивные — Применение 202 Принцип действия 201 — Схема

6441-А индуктивные

Датчики индуктивные 26 — Характеристика

Датчики индуктивные 26 — Характеристика электроконтактные 25 — Характеристика

Датчики индуктивные электроконтактные 83 — Метрологические характеристики

Датчики индуктивные — Преимущества 5.146 — Принцип действия 5.146 — Характеристики

Индуктивность

Тензометры — Характеристика индуктивные — Типы



© 2025 Mash-xxl.info Реклама на сайте