Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вычисления Напряжения касательные при изгиб

Величина и прогиб балки зависят явно лишь от изгибающего момента. Непосредственно от величины перерезывающей силы зависят касательные напряжения в поперечном сечении, которые, как правило, при изгибе бывают менее существенными, чем нормальные напряжения. Способы вычисления касательных напряжений мы здесь рассматривать не будем.  [c.383]

Для вычислений нормальных напряжений используем гипотезу плоских стечений, предположив, что плоское поперечное сечение, перпендикулярное к оси бруса до деформации, остается плоским и нормальным к изогнутой оси бруса в деформированном состоянии. Эта гипотеза подтверждается экспериментом. Если на боковой поверхности резинового бруса нанести ортогональную сетку продольных и поперечных линий, то при изгибе поперечные линии не искривляются и остаются ортогональными искривленным продольным линиям сетки. Заметим, что гипотеза плоских сечений несовместима с наличием касательных напряжений связанных со сдвигом. Она приблизительно соответствует действительности, поскольку эти напряжения малы по сравнению с нормальными напряжениями. Гипотеза плоских сечений является совершенно точной в случае чистого изгиба, когда к брусу приложены противоположно направленные пары, изгибаюш.ие брус в одной из главных плоскостей.  [c.123]


При получении выражений прогибов для трехслойной балки (см. разд. 5.8), как правило, необходимо принимать во внимание влияние деформаций сдвига, поскольку G3— модуль сдвига материала заполнителя — обычно мал и, следовательно, мала жесткость на сдвиг. При вычислении прогибов в таких балках могут быть использованы методы, которые уже были описаны в этом разделе. Жесткость балки при изгибе EI заменяется величиной Ясд сл> сл— модуль упругости несущих слоев, а / л—момент инерции этих слоев (см. формулу (5.3 ). Жесткость при сдвиге GF/а д заменяется поскольку предполагается, что касательное напряжение равномерно распределено по площади заполнителя F n поэтому коэффициент сдвига сд становится равным единице. Поскольку в трехслойных балках используются самые различные материалы, при практическом применении часто случается, что жесткости при изгибе и при сдвиге не могут быть получены расчетным путем из-за отсутствия точных данных, В таком случае эти жесткости определяются экспериментально для каждого из используемых материалов и типов конструкций.  [c.253]

Это выражение называется формулой Журавского, который первым дал способ вычисления касательных напряжений при изгибе.  [c.166]

Если стержень работает на внецентренное растяжение (сжатие), то испытываемый им изгиб является чистым изгибом, и поэтому касательные напряжения в поперечных сечениях не возникают. Ввиду этого излагаемая теория не нуждается в поправках ни в отношении вычисления напряжений, ни в отношении определения деформаций. Но если стержень растянут (сжат) и одновременно изогнут поперечной нагрузкой, то в поперечных сечениях возникают касательные напряжения, а потому приходится учитывать высказанные ранее соображения о центре изгиба ( 65). Стержень работает на изгиб и растяжение только в том случае, если плоскость поперечной нагрузки проходит через центр изгиба. В противном случае он испытывает также кручение. При внецентренном растяжении (сжатии), как следует из сказанного, кручение не может возникнуть, так как касательные напряжения отсутствуют.  [c.285]

Для точного измерения малых деформаций можно применять зеркальный тензометр и тензодатчики. При этом определяют модуль сдвига и касательные пределы текучести, упругости и пропорциональности. Так же, как и при изгибе, следует различать два условных предела текучести при кручении реальный, основанный на вычислении истинных напряжений, и номинальный с вычислением напряжений по обычным формулам сопротивления материалов [19]. В обоих случаях допуск (исходя из удлинения 0,2% при растяжении) следует выбирать по 1П теории прочности g = 1,5е = 0,3%. Так же, как и при изгибе, номинальный предел текучести выше, чем реальный, вследствие появления остаточных напряжений обратного знака. Как показала С. И. Ратнер, превышение номинального предела над реальным для разных материалов составляет 20—30%.  [c.49]


Касательные напряжения при изгибе, уравновешивающие поперечную силу Q, достигают, как мы увидим дальше, более или менее значительной величины в балках, сечение которых имеет форму узкого прямоугольника или составлено из прямоугольников (двутавр). Поэтому мы займёмся в первую очередь вопросом о вычислении. касательных напряжений по сечениям, перпендикулярным к оси балки, в том случае, когда эти сечения имеют форму прямоугольника (фиг. 211) высотой А и шириной д.  [c.298]

По рмуле (141), выведенной для балок прямоугольного сечения, обычно вычисляют величины касательных напряжений в балках с сечениями иной формы. Практически представляет интерес вычисление только наибольших напряжений в сечении касательные напряжения при изгибе балок как правило имеют наибольшую величину на высоте нейтрального слоя величина их вычисляется по формуле  [c.221]

Перейдем к выводу формулы для вычисления касательных напряжений при поперечном изгибе балок прямоугольного сечения. Эта формула была выведена в 1855 г. русским инженером-мостостроителем Д. И. Журавским. Потребность в такой формуле была вызвана тем, что в прошлом веке при строительстве мостов широко применялись деревянные конструкции, а балки из древесины обычно имеют прямоугольное сечение и плохо работают на скалывание вдоль волокон.  [c.252]

Что касается касательных напряжений, то и их можно вычислить тем же приемом, которым мы пользовались при вычислении нормальных суммарное напряжение будет равно геометрической сумме касательных напряжений от изгиба в каждой из главных плоскостей. Практического значения определение этих напряжений обычно не имеет.  [c.361]

Предыдущее исследование нормальных напряжений в балках основывается на рассмотрении чистого изгиба это означает, что в поперечном сечении отсутствует поперечная сила. Деформация, обусловленная касательными напряжениями, состоит в искажении поперечного сечения, так чтд сечение, плоское до изгиба, уже не остается плоским после изгиба. Это искажение усложняет общую картину, но более тщательные исследования показывают, что наличие касательных напряжений и сопутствующих им искажений лишь незначительно меняет нормальные напряжения, найденные по формуле (5.10) для чистого изгиба Г5.2]. Таким образом, при вычислении  [c.150]

Выше было указано, что при косом изгибе вычисление касательных напряжений в поперечных сечениях бруса излишне, так как при расчетах на прочность они не имеют значения. Но их можно определить по формуле Журавского раздельно от поперечных сил Qj, и (Зг-  [c.418]

В главе. XXX были приведены выводы основных формул теории В. 3. Власова для вычисления нормальных и касательных напряжений при кручении и изгибе тонкостенных стержней.  [c.665]

Клебш первый занялся исследованием задачи плоского напряженного состояния и дал решение для круглой пластинки (см. с тр. 310). Другой случай, имеющий большое практическое значе-лие, был решен Харлампием Сергеевичем Головиным (1844— 1904) ). Он заинтересовался деформациями и напряжениями круговых арок постоянной толщины. Рассматривая задачу как двумерную, он сумел получить решения для систем, представленных на рис. 170. Он находит, что в условиях чистого изгиба (рис. 170, а) поперечные сечения остаются плоскими, как это обычно и принимается в элементарной теории кривого бруса. Но найденное им распределение напряжений не совпадает с тем, которое дается элементарной теорией, поскольку последняя предполагает, что продольные волокна испытывают лишь напряжение о, простого растяжения или сжатия, между тем как Головин доказывает существование также и напряжений а , действующих в радиальном направлении. При изгибе же, производимом силой Р, приложенной к торцу (рис. 170, б), в Киждом поперечном сечении возникают не только нормальные напряжения, но также и касательные, причем распределение последних не следует параболическому закону, как это предполагается в элементарной теории. Головин вычисляет не только напряжения для такого кривого бруса, но также и его перемещения. Имея формулы перемещений, он получает возможность решить и статически неопределенную задачу арки с защемленными пятами. Проделанные им вычисления для обычных соотношений размеров арок показывают, что точность элементарной теории должна быть признана для практических целей вполне достаточной. Исследования Головина представляют собой первую попытку применения теории упругости в изучении напряжений в арках.  [c.419]


Диференциальное уравнение равновесия П. постоянной тол-щ и н ы. Плоскость, параллельную основаниям цилиндра или призмы и делящую высоту пополам, называют срединной плоскостью П. Относим П. к прямоугольной декартовой системе координат. Располагаем оси х-ов и -ов в срединной плоскости ось направляем перпендикулярно к этой плоскости. Через обозначаем прогиб срединной плоскости (го называют упругой поверхностью П.), а через и и V—перемещения, соответственно параллельные осямя -ов и у-оъ. При выводе ур-ия поверхности, вид к-рой принимает срединная плоскость, принимают, что последняя не испытывает рас-тялсений, что линейные элементы, перпендикулярные к срединной плоскости, после изгиба нормальны к срединной поверхности, что при изгибе П. точки срединной плоскости перемещаются только параллельно оси -ов, т. е. для точек этой плоскости перемещения u=v = 0, что толщина П. 1г бесконечно мала по сравнению с ее размерами, а прогиб мал по сравнению с к. Удлинениями линейных элементов срединной плоскости пренебрегают как бесконечно малыми высшего порядка по сравнению с такими удлинениями для слоев П., удаленных от срединной плоскости. При вычислении нормальных напряжений и касательных Уд для данного напряженного состоя-  [c.275]

Упомянутые авторы определяли центр изгиба как точку, через которую проходит равнодействующая касательных напряжений, при этом, конечно, кроме вертикальных касательных напряжений, учитывались и горизонтальные, возникающие в полках балки. Наиболее правильно задачу решил Майар. Эггеншвиллер же допустил ошибку. Он считал, что во всех случаях кручение тонкостенного профиля сопровождается появлением нормальных напряжений независимо от того, имеется ли и каково по величине препятствие искривлению сечения, поэтому по его вычислению напряжения получились втрое больше, чем по экспериментам Баха, что он объяснил неточностью проведения экспериментов. На самом же деле, как мы увидим ниже, качество проведения этих экспериментов было очень высокое.  [c.5]

В общем случаё изгиба балок, поперечно нагруженных в плоскости симметрии, напряжения, распределенные по поперечному Сечению балки, должны уравновешивать поперечную силу и изгибающий момент в этом сечении. Вычисление напряжений обычно производят в два этапа, сначала определяют напряжения, вызываемые изгибающим моментом и называеьше нормальными напряжениями, а затем определяют касательные напряжения, возникающие от поперечной силы. В этом параграфе мы ограничимся вычислением нормальных напряжений вопрос о касат ьных напряжениях будет обсужден в следующем параграфе. При вычислении нормальных напряжений мы предполагаем, что эти напряжения распределяется таким же образом, как и в случае чистого изгиба, и формулы для определения напряжений, выведенные в параграфе будут справедливы. (Более полное обсуждение вопроса о распределении напряжений вблизи точек приложения сосредоточенных сил дано в томе П.)  [c.96]

Этот результат совпадает с тем, что дает элементарная теория изгиба, если при вычислении прогибов принято во внимание влияние касательных напряжений и взято при этих подсчетах максимальное значение сдвига, соответствукн щее нейтральному слою изгибаемой балки.  [c.82]

Структура полученной формулы совершенно аналогична структуре формулы Журавского для вычисления касательных напряжений при поперечном изгибе. Заметим, что величина секториальных касательных напряжений сравнительно невелика. Однако, несмотря на это, они принимают на себя значительную долю внешнего момента, так как плечи соответствующих касательных усилий обычно вемки (см., например, фиг. 466, б).  [c.556]

В предположении, что простая формула для балок может быть использована с достаточной точностью при вычислении нормальных напряжений от изгиба в балках переменного поперечного сечения, ве- личина касательных напряжений в этих балках может быть вычислена при помощи метода, уже примененного для призматических- балок (см. т. I, стр. 105). Предположим, что прямоугольная балка переменной высоты к и постоянной ширины Ь изгибается грузом Р приложенным на конце (рис. 43). Взяв два смежных поперечных сечения тп и т щ и вырезав элемент ттфа горизонтальной плоскостью аЬ, най дем величину касательных напряжений из уравнения равновесия, этого элемента  [c.59]


Смотреть страницы где упоминается термин Вычисления Напряжения касательные при изгиб : [c.984]    [c.106]    [c.20]    [c.270]    [c.152]    [c.168]    [c.288]   
Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.87 ]



ПОИСК



I касательная

Вычисление напряжений при изгибе

Изгиб касательные напряжения

Кольца смазочные тонкостенные — Напряжения касательные при изгибе поперечном 315 — Элементы — Вычисление

Напряжение изгибающие

Напряжение касательное

Напряжение при изгибе

Напряжения Напряжения изгиба

Напряжения Напряжения касательные

О вычислении напряжений

ОТДЕЛ V ПОЛНАЯ ПРОВЕРКА ПРОЧНОСТИ ПРИ ИЗГИБЕ, Вычисление касательных и главных напряжений в балках



© 2025 Mash-xxl.info Реклама на сайте