Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютона гипотеза вязкого трения

Для составления замкнутой системы дифференциальных уравнений используют гипотезу Фурье—Остроградского о векторе я конвективного теплообмена, гипотезу Био—Фурье о теплопроводности в жидкости и гипотезу Ньютона о вязком трении в жидкостях.  [c.231]

Основные дифференциальные уравнения сплошности (2.3), движения (2.12), (2.13) и (2.14) и энергии (2.51) выражают собой фундаментальные законы сохранения массы импульса (количества движения) и энергии. Кроме того, эти уравнения содержат подтверждаемые экспериментом гипотезы — закон вязкого трения Ньютона и закон Фурье.  [c.26]


Уравнения переноса массы и тепла при ламинарном и турбулентном течениях однофазных или двухфазных теплоносителей в каналах выводятся из основных законов физики сохранения массы, сохранения энергии, вязкого трения Ньютона, теплопроводности Фурье. Здесь и далее не будут затрагиваться вопросы переноса в жидкостях, законы трения в которых не подчиняются закону Ньютона (т = (Г ди ду). Уравнения неразрывности, движения и переноса тепла с учетом зависимости свойств от параметров теплоносителя образуют систему, представляющую основу для расчета полей скорости и температуры. Эта система является замкнутой для ламинарного режима течения. Для турбулентных режимов течения приходится прибегать к гипотезам или построению полуэмпирических моделей, позволяющих замкнуть систему уравнений. Для течений двухфазного потока, особенно в условиях кипения или конденсации, эмпирический подход до настоящего времени преобладает.  [c.9]

Предполагается, что при движении жидкости наблюдается скольжение одного слоя жидкости по другому, в результате чего происходит процесс, аналогичный трению, поэтому силы, возникающие при скольжении, называются силами внутреннего трения. Наличие внутреннего трения в жидкости обусловливает ее свойство отзывать сопротивление касательным усилиям, которое называется вязкостью. Жидкость, в которой проявляется вязкость, называется вязкой. Всякое трение сопровождается потерей энергии, поэтому при движении вязких жидкостей неизбежно теряется часть энергии, содержащейся в потоке. Еще в 1687 г. Ньютон высказал гипотезу о том, что силы внутреннего трения, возникающие между соседними движущимися слоями жидкости, прямо пропорциональны скорости относительного движения и площади поверхности соприкосновения, вдоль которой совершается относительное движение, зависят от рода жидкости и не зависят от давления.  [c.14]

Вязкость — это способность жидкости сопротивляться сдвигу, т. е. свойство, обратное текучести (более вязкие жидкости являются менее текучими). Вязкость проявляется в возникновении касательных напряжений (напряжений трения). Рассмотрим слоистое течение жидкости вдоль стенки (рис. 1.3). В этом случае происходит торможение потока жидкости, обусловленное ее вязкостью. Причем скорость движения жидкости в слое тем ниже, чем ближе он расположен к стенке. Согласно гипотезе Ньютона касательное напряжение, возникающее в слое жидкости на расстоянии у от стенки, определяется зависимостью  [c.10]


Развитие производительных сил в XIX в. поставило перед наукой новые задачи, решать которые с помощью гидромеханики идеальной жидкости уже было невозможно. Надо было переходить к изучению движения реальных жидкостей. Рассмотрением этого вопроса занялся Навье, который в 1823 г. на основе гипотезы Ньютона о силе внутреннего трения вывел дифференциальные уравнения движения вязкой жидкости. Однако эти уравнения, даже упрощенные Стоксом, из-за значительных математических трудностей можно было применять лишь для простейших случаев движения. Таким образом, для решения конкрет-  [c.7]

Хронологически за работами античных ученых следуют работы Леонардо да Винчи (1452—1519 гг.), но его труды, к сожалению, были опубликованы лишь в XIX—XX вв. Леонардо да Винчи занимался, в частности, разработкой теории плавания и истечения жидкостей из отверстий, а также изучением механизма движения воды в реках и каналах. Дальнейшие работы в области гидравлики связаны с именами Г. Галилея, Б. Паскаля, И. Ньютона и др. X. Гюйгенс (1629—1695 гг.) и И. Ньютон (1642—1727 гг.) первыми установили на основе опытов, что сопротивление в жидкостях в ряде случаев пропорционально квадрату скорости их движения. Гипотеза Ньютона о пропорциональности напряжения трения в вязких жидкостях градиенту скорости по нормали и свойствам жидкости — ее вязкости стала законом современной гидравлики, широко используемым во многих уравнениях движения жидкостей.  [c.6]

Анри Навье, на основе гипотезы Ньютона о силе внутреннего трения, вывел дифференциальное уравнение движения вязкой жидкости.  [c.14]

Силы вязкости существенно влияют на величину и распределение скоростей движения жидкости. В соответствии с гипотезой Ньютона вязкие жидкости при движении образуют слои, между которыми действуют касательные напряжения жидкостного трения. Слой, непосредственно прилегающий к твердой границе потока, имеет нулевую скорость. По мере удаленности слоев от твердой границы их скорость возрастает.  [c.84]

Профиль скорости легко получить из выражения (14.64). Для этого достаточно принять гипотезу о постоянстве турбулентного трения по толщине пограничного слоя Тт /(у) = onst. Подчеркнем, что речь идет о турбулентном трении, которое принимается постоянным в интервале бв.п г/ бт, где бв.п — толщина вязкого подслоя. В самом вязком подслое (см. рис. 14.9 область а) в связи с его малой толщиной [бв.п= (Ю ч--т-10 3)бт, см. пример 14.2] и преобладанием молекулярной вязкости обычно принимается прямолинейный профиль скорости, что по закону вязкого трения Ньютона дает T = onst и, следовательно, тс=Тв.п, где Тв.п — трение на границе между вязким подслоем и турбулентным ядром. В силу сказанного трение постоянно в интервале O i/ бт и равно трению на стенке Тс В этом случае для произвольного значения у из области турбулентного ядра бв.п У бт справедливо соотношение  [c.365]

Эксперименты показывают, что касательная составляющая скорости после удара на самом деле тоже может изменяться. Поэтому математическую модель удара, основанную на гипотезе Ньютона, следует обобщить. Такое обобщение можно осуществить в разнйх направлениях (в зависимости от физической природы сил трения, возникающих в момент удара). Мы сейчас изложим математическую модель удара с вязким трением.  [c.20]

Г Для определения величин касательных напряжений воспользу-емся гипотезой пропорциональности напряжений соответствующим реформациям. Иллюстрацией применения этой гипотезы является "л>ормула Ньютона для напряжения трения, возникающего при дви-К-Зрении вязкой жидкости относительно твердой стенки. lio этой фор-Кг ле Xyx = ii dVy/dx), т. е. напряжение пропорционально полускоро-Zr=0l2) dVy/dx) скашивания угла в направлении оси г, отку-написать, что T , =2pez. Эта зависимость распространя-  [c.101]

В этом случае нетрудно понять механический смысл влияния вязкости. Согласно гипотезе Ньютона [см. формулу (6)], жидкость как бы прилипает к стенкам и поэтому скорость граничнойструйки, примыкающей к стенке, равна нулю. Но уже на небольшом расстоянии от стенки она значительна (см., например, эпюру скорости по сечению трубы на рис. 64, а). Это и является причиной возникновения градиента скорости и, как результат, касательного напряжения т, которое, действуя на площадь жидкостного трения, создает силу сопротивления. Для преодоления этих сил требуется определенная затрата механической энергии жидкости. Поэтому в процессе движения вязкой жидкости запас ее механической энергии уменьшается. Обращаясь к схеме рис. 67, можно утверждать, что  [c.117]


Экспериментальные средства совершенствовались, опытные данные накапливались, и вскоре Л. Навье придал гипотезе Ньютона несколько иную формулировку, после чего эта гипотеза утвердилась в теории вязкой жидкости. В формулировке Ньютона сила трения предполагается пропорциональной скорости, с которой частицы разъединяются друг от друга , т. е. относительной скорости концентрических слоев жидкости (если она протекает в трубке). Для этой величины Навье ввел количественную меру, пропорциональную градиенту скорости dvldn или производной скорости по нормали к направлению скорости.  [c.185]

В предшествующих главах изучались упорядоченные течения вязкой несжимаемой жидкости, которые получили название ламинарных течений. Общая особенность течений такого рода заключалась в том, что траектории всех частиц жидкости представляли собой плавные кривые, а поле скоростей и давлений было непрерывным как в отношении пространственных координат, так и в отношении времени. Для этих течений принималось, что внутреннее трение частиц жидкости подчиняется гипотезе Ньютона и что закономерности этих течений полностью могут быть изучены на основании полных дифференциальных уравнений движения вязкой несжимаемой жидкости или приближённых уравнений, но полученных из полных с помощью отбрасывания отдельных слагаемых.  [c.433]


Смотреть страницы где упоминается термин Ньютона гипотеза вязкого трения : [c.21]    [c.8]    [c.61]   
Прикладная газовая динамика. Ч.1 (1991) -- [ c.87 ]



ПОИСК



Гипотеза

Ньютон

Ньютона гипотеза

Ньютона гипотеза трения

Трение вязкое



© 2025 Mash-xxl.info Реклама на сайте