Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения влияние начальной кривизны

Сравнение этого результата с полученными выше для плоской пластинки показывает, что влияние начальной кривизны сказалось здесь в снижении максимального напряжения с 1785 кг/сл до 1120 кг/см . Этот результат получен в том предположении, что начальный прогиб равен толщине пластинки. Увеличивая начальный прогиб, мы сможем снизить максимальное напряжение в еще большей степени.  [c.41]

Для получения напряжений изгиба мы воспользуемся тем обстоятельством, что прогиб, а следовательно и кривизна, могут быть представлены в виде двух слагаемых первое слагаемое соответствует изгибу прямого стержня, вторым оценивается влияние начальной кривизны. При вычислении изгибающего момента по середине пролета мы первое слагаемое найдем при помощи таблицы значений функции фо (и) (см. табл. 2, части второй). Что касается второго слагаемого, то при начальном искривлении по синусоиде дополнительный прогиб, обусловленный этим искривлением, будет  [c.372]


Кроме эксцентриситета и начальной кривизны, имеется еще целый ряд обстоятельств, всегда возможных на практике и гораздо сильнее влияющих на грузоподъемность сжатых стержней, чем на прочность балок и растянутых деталей. Сюда относятся влияние наклепа, величина начальных напряжений, вызванных изготовлением частей стержня, местные дефекты в отливках, сучки в дереве. Для стальных конструкций влияние этих добавочных обстоятельств учитывается некоторым (процентов на 10—20) повышением коэффициента запаса на устойчивость (см. 153).  [c.486]

При исследовании изгиба кривых стержней мы убедились, что элементарная теория, построенная на гипотезе плоских сечений, дает для напряжений весьма точные результаты. Поэтому в основание дальнейших выводов мы можем положить эту гипотезу и считать, что величина изгибающего момента пропорциональна изменению кривизны оси стержня в рассматриваемом сечении. Рассмотрим здесь случай, когда ось стержня весьма мало искривлена в одной из главных плоскостей стержня и все силы действуют в плоскости кривизны. Задача эта представляет практический интерес, так как ее решение позволит нам сделать некоторые выводы относительно влияния начального прогиба, всегда встречающегося при практическом выполнении прямых стержней, на обстоятельства изгиба стержня. При исследовании изгиба направим ось х по линии, соединяющей концы искривленной оси стержня, ось у расположим в плоскости кривизны. Обозначим через у ординаты начального искривления оси и через Ух — прогибы, обусловленные действием сил. При малых искривлениях мы можем как для начальной кривизны, так и для кривизны, получающейся после деформации, брать приближенные выражения. В таком случае изменение кривизны, вызванное действием сил, представляется так  [c.230]

В 57—60 был изучен чистый продольный изгиб, который в действительности почти всегда бывает осложнен какими-нибудь дополнительными факторами. К последним могут быть отнесены начальная кривизна стойки, незначительный эксцентриситет сжимающей нагрузки и, наконец, дополнительная поперечная нагрузка интенсивностью ц. При незначительности этих факторов влиянием их на результаты основного расчета можно пренебречь. Но когда это влияние оказывается существенным, необходимо его учитывать. В таких случаях нужно проверить стойку на устойчивость только при действии продольной сжимающей силы, т. е. без учета осложнения явления продольного изгиба дополнительными факторами, а затем проверить напряжение в опасном сечении стойки уже с учетом их влияния.  [c.216]


Резюмируя, можно сказать на основании теоретических соображений, что при напряжениях в пределах пропорциональности ни эксцентриситет, ни начальная кривизна не оказывают влияния на величину разрушающей силы при продольном сжатии стержня.  [c.660]

В случае стержней средней и малой гибкости, для которых критические напряжения превышают предел пропорциональности, начальный эксцентриситет и начальная кривизна значительно снижают величину критической силы и критического напряжения. Для компенсации указанного снижения увеличивают коэффициент запаса устойчивости по сравнению с коэффициентом запаса прочности. Так как рассмотренные в данном параграфе величины е и Шо, вообще говоря, оказывают влияние и на стержни большой гибкости, то и для них коэффициент запаса устойчивости берется больше коэффициента запаса прочности.  [c.429]

Остаточные напряжения могут влиять на общую устойчивость сварных стержней. Механизм влияния здесь может быть двоякий. Один — связан с уменьшением общей устойчивости в связи с наступлением местной потери устойчивости отдельных элементов второй — с наличием остаточных напряжений в сжатом стержне, а также начальной кривизны после сварки. При расчетах на общую устойчивость сжатых сварных стержней влияние остаточных Напряжений обычно не учитывают. Практика эксплуатации сварных конструкций показала, что имеющиеся запасы устойчивости по общепринятым расчетам достаточны, чтобы этим влиянием можно было пренебречь.  [c.65]

Влияние кривизн и деформаций. Поскольку деформации и напряжения определялись через начальные длины и площади, jo при определении-величины сил, приложенных к сторонам малого элемента стенки оболочки, необходимо принять во внимание только его исходную геометрию. Но при подстановке этих сил в условия равновесия необходимо определить их плечи, направление и линии действия, а также их зависимость от окончательной геометрии элемента.  [c.426]

В этой главе обсуждаются формы потери устойчивости без-моментного напряженного состояния оболочек, локализованные в окрестности края. Влияние моментности начального напряженного состояния и докритических деформаций рассматривается в гл. 14. Причинами возникновения обсуждаемых форм потери устойчивости являются слабое закрепление края и переменность определяющих параметров. Такие формы возможны для выпуклых оболочек, а также для оболочек нулевой кривизны под действием осевого сжатия. Локализация форм потери устойчивости в окрестности края для оболочек нулевой кривизны при других видах нагружения внешнее давление, кручение), а также для оболочек отрицательной кривизны не имеет места см. гл. 7 — 12). Как показано ниже, слабое закрепление края может сущ,ественно уменьшить критическую нагрузку, в то время как переменность определяюш,их параметров меняет ее незначительно.  [c.261]

Благодаря тщательному монтажу и обильной смазке в подшипниках качения практически не обнаруживается износа даже после продолжительной работы. Однако по истечении определенного времени, зависящего от величины нагрузки и числа оборотов, на рабочих поверхностях возникают усталостные явления, которые в начальной стадии проявляются в виде мелких рисок, а в дальнейшем наблюдается шелушение или выкрашивание. Первичные риски нередко вызываются неоднородностью материала, имеющей место в любой стали. Опыт показывает, что усталостные явления возникают у одинаковых подшипников при одних и тех же условиях эксплуатации через разные промежутки времени. Рассеивание долговечности, наблюдаемое у подшипников одной и той же партии, достигает 20—40. Такое значительное рассеивание объясняется тем, что подшипник состоит из многих деталей, прочность и износостойкость которых в пределах определенных допусков всегда различны. Размеры деталей выдерживаются в пределах допусков, величины которых обусловлены техническими условиями- Разноразмерность тел качения оказывает существенное влияние на распределение нагрузки между ними и на величины возникающих контактных напряжений. При точечном контакте величины Отах существенно зависят от соотношений главных кривизн соприкасающихся деталей. Большое влияние на долговечность подшипников оказывает шероховатость рабочих поверхностей, внутренние зазоры и другие факторы. Поскольку заранее невозможно учесть влияние всех этих факторов, нельзя также заранее определить долговечность каждого из подшипников в партии.  [c.66]


В случае круговой цилиндрич. оболочки, сжатой вдоль оси, можно установить т. н. верхнее критич. напряжение Окр в=[1/> 3(1-г2)Ш( 1/Д) к и Я — толщина и радиус кривизны срединной поверхности оболочки. Несколько иную структуру имеют ф-лы для верх, критич. напряжения при действии поперечного давления или скручивающих пар. Потеря устойчивости реальных оболочек во мн. случаях происходит при меньшей нагрузке вследствие значит, влияния разл. факторов, особенно начальных неправильностей формы.  [c.798]

Работу можно в дальнейшем еще более упростить, используя в выражениях (3.16а) для мембранных напряжений функцию Эри ф. Она тождественно удовлетворяет уравнениям равновесия в направлении осей X ш у, аналогичным уравнениям двумерной теории упругости, и поэтому не учитывающем влияние начальной кривизны и конечных перемещений на условия равновесия в направлении осей X ш у. Приравнивая мембранные (не зависящие от координаты z) напряжения (6.15) мембранным деформациям, выраженным через функцию ф с помохцью закона Гука, из  [c.410]

Чтобы показать влияние начальной кривизны пластинки на величину максимального напряжения в ней, применим уравнение (28)к численному примеру. Положим, что нам дана стальная пластинка размерами /=1144 мм, h = 9,5 мм, несущая равномерно распределенную нагрузку q = 0,7 Kzj M . Если начального прогиба нет, т. е. если 8 = 0, то уравнение (28) приводится к  [c.40]

В отличие от нормальных касательные сетки при своем деформировании вместе с материалом отражают в большей мере процесс сдвига, который может быть измерен при деформировании образца. Изменение начального прямого угла между линиями сетки непосредственно характеризует величину пластического сдвига. Другие преимущества касательных сеток — уменьшение влияния кривизны йоверхности на результаты измерений и возможность непосредственного изучения отклонения направлений линий сетки при деформировании от направления наибольших касательных напряжений.  [c.36]

Естественно, что единичная продольная сила Р (усилие обжима) будет связана с поперечной силой (без учета влияния трения) соотношением Р = Р tg а. В начале пластического деформирования поперечные размеры краевой части заготовки уменьшаются. Одновременно радиусы кривизны срединной поверхности в меридиональном сечении уменьшаются от бесконечности, а Рд в широтных сечениях увеличиваются от значений Рд = DJ2. Если у края заготовки меридиональные напряжения Ор близки к нулю, то из уравнения (251) можно установить, что увеличение радиусов кривизны в широтных сечениях в начале обжима может привести к некоторому уменьшению усилия деформирования. Уменьшению усилия в начальном этапе деформирования может способствовать и то, что по мере уменьшения диаметра краевой части заготовки изгибающий момент, действующий на границе очага деформации с недеформируемой частью, будет создаваться не только горизонтальной проекцией усилия деформирования Pi, но и вертикальной силой Р. Такое приближенное качественное рассмотрение начального периода деформирования объясняет причины того, что при сравнительно больших углах конусности а начальный этап сопровождается некоторым уменьшением усилия обжима. В начальном этапе деформирования с матрицей контактирует краевая часть заготовки и осуществляется процесс формирования участка свободного изгиба. Весьма интересный анализ начального этапа деформирования при обжиме и раздаче был проведен 3. Марчиняком 160]. После того как участок свободного изгиба достигает размеров, соответствующих данным условиям деформирования, он стабилизируется, и начинается образование участка очага деформации, контактирующего с конической поверхностью матрицы.  [c.215]


Смотреть страницы где упоминается термин Напряжения влияние начальной кривизны : [c.457]    [c.77]    [c.248]    [c.39]    [c.139]    [c.166]   
Пластинки и оболочки (1966) -- [ c.39 , c.41 ]



ПОИСК



Влияние напряжений

Влияние начальный

Кривизна

Кривизна кривизна

Кривизна начальная

Напряжение начальное



© 2025 Mash-xxl.info Реклама на сайте