Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Самолет Примеры разрушения

Использование сверхзвуковых самолетов в пассажирской авиации выдвигает ряд проблем, связанных с действием воздушной ударной волны (звукового удара) на людей, животных, поверхность грунта, здания, сооружения и различные технические устройства. Наиболее важным вопросом является изучение влияния на людей систематических ударов при регулярных полетах самолетов, но не менее важно и поведение зданий и сооружений при воздействиях такого рода. Известны многочисленные случаи, когда звуковой удар от сравнительно легких самолетов вызывал разрушение строительных конструкций. Для примера можно привести полет самолета Р-104 на высоте 150 м в аэропорту г. Оттавы (Канада), в результате которого зданию аэровокзала был причинен значительный ущерб (стоимость ремонтных работ, в основном восстановления оконного застекления и перегородок, составила 0,3 млн. долларов).  [c.92]


Выражения (8) представляют собой гироскопические моменты, развиваемые телом Т. Эти инерционные моменты действуют на связи, принуждающие тело Т, имеющее собственную угловую скорость й ) вращаться с угловой скоростью йе- в качестве примера рассмотрим движение самолетного двухлопастного винта, представляющего собой несимметричное твердое тело, в опорах которого при вираже самолета возникают силы реакций Д и Еу, нагружающие подшипники вала винта и способствующие их разрушению. На рис. 6, а представлен двухлопастной винт самолета, разворачивающегося с угловой скоростью Йе вокруг ОСИ X.  [c.26]

В анализе и применении концепции остановки трещин за время, прошедшее от разрушений коммерческих судов во время второй мировой войны и аварий реактивных самолетов Комета в 1954 г. [2J, достигнут значительный прогресс. Обе серии упомянутых аварий относятся к примерам крупномасштабного неконтролируемого разрушения. Корреляция между уровнем энергии разрушения 15—20 фунт-дюйм и местом остановки разрушения в судовых плитах показала наличие  [c.222]

Опыт эксплуатации авиационной техники показал, что многие неметаллические материалы подвержены микологическим поражениям, причем наибольшему разрушению подвергаются материалы, в состав которых входят питательные для микроорганизмов вещества. К таким материалам относятся древесина, казеиновые и альбуминовые клеи, хлопчатобумажные ткани и т. д. Однако были замечены случаи повреждения материалов, которые, не являясь питательной средой, служат подложкой для грибниц. Типичным примером является повреждение грибками поверхности стекол оптических приборов. Выделяющиеся в процессе жизнедеятельности микроорганизмов спирты, кислоты, сульфаты и другие вещества способны вызывать коррозию металлов и повреждать некоторые материалы, например лакокрасочные покрытия. Отдельные виды грибков живут и размножаются в керосине, что вызывает загрязнение топлива и коррозию стенок кессон-баков самолетов,  [c.13]

Разрушающее действие солнечного света зависит от величины ультрафиолетовой составляющей и температуры, при которой происходит облучение. На примере испытаний меламиноалкидных эмалей авторы показали, что с увеличением температуры на каждые 10° С скорость фотохимической деструкции возрастает примерно в 1,1—1,5 раза. При температурах —10-т-+20° С потеря блеска меламиноалкидных эмалей имеет линейный характер. Однако при более низких температурах порядка —40- —60° С, которые характерны для высот 10—20 км, скорость изменения цвета (меление) будет протекать медленнее. Наличие значительного количества озона даже при низких температурах и коротковолновой радиации вызывает интенсивное старение лакокрасочного покрытия. Этот фактор играет важную роль, так как обшивка самолета, находящегося на аэродроме в безоблачную погоду летом, в зависимости от цвета эмали, которой он окрашен, и ее оптических свойств (коэффициент отражения и излучения) нагревается до 70° С (см. табл. 4). На больших высотах полета (10—15 км) солнечная радиация богата коротковолновой составляющей спектра, что обусловливает еще более интенсивное разрушение лакокрасочных покрытий. Следовательно, количество солнечной радиации, падающей на поверхность самолета, складывается из энергии, которую он получает, находясь на аэродроме, и энергии, которую он получает при высотном полете. Действительно, наиболее интенсивное разрушение лакокрасочного покрытия обычно наблюдается ка верхних поверхностях плоскостей и фюзеляжа, а также на боковых поверхностях вертикального оперения.  [c.26]


Теория устойчивости упругих систем. Достижение нагрузкой величины критической эйлеровой силы может считаться за момент разрушения. Правда, как мы выяснили на примере сжатого стержня и на некоторых упрощенных искусственных примерах ( 4.5), достижение критической силы не всегда означает потерю несущей способностп. Но при Р> э прогибы начинают, как правило, расти чрезвычайно быстро, поэтому практически эйлерову силу можно принимать за разрушающую нагрузку. В отдельных случаях допускается и работа конструкций в после-критической области. В крыле самолета, например, под действием сжимающих напряжений, обшивка в эксплуатационных условиях может терять устойчивость, но силовая конструкция крыла — лонжероны и нервюры — продолжают сохранять несущую способность.  [c.652]

При использовании периодического контроля решающее значение приобретает достоверность оценки кинетических закономерностей эксплуатационного роста трещин. Они устанавливаются на основе лабораторных методов исследования деталей после их разрушения в эк плyaтaц п или после выявления в них трещин. На основании результатов такого исследования первоначально решается вопрос о целесообразности проведения разового контроля деталей на всем парке ВС. Этот вид контроля носит браковочный характер и во многих случаях связан с большими экономическими издержками, поскольку зоны контроля могут быть непригодны для контроля стандартными методами, и требовать разработки специальных методов контроля на открытых площадках прямо на стоянке ВС. Примером такой ситуации может служить контроль уха-подкоса основного шасси самолета Ту-154 [110].  [c.66]

В качестве примера рационального использования различных методов соединения боралюминия в конструкциях приведены крышка люка самолета F-106 и силовой шпангоут самолета F-111. Крышка люка размером 289x280 мм с радиусом кривизны 1090 мм выполнена клееной. Шпангоут размером 762 х 1220 мм изготовлен из титана и композиционного материала на основе алюминиевого сплава 6061-Т6 и волокон борсик. Для соединения элементов применяли точечную сварку, склейку и механический крепеж. Во время прочностных испытаний образцов разрушение произошло при нагрузках, составляющих 160 и 130% предельной расчетной для крышки и шпангоута соответственно.  [c.198]

Под термином .усталость- подразумевают многократное при- ложение небольших нагрузок, вызывающее локальные пластиче- ские деформации, которые могут послужить причиной наруше- ния структуры материала. Приложенные нагрузки не настолько ] велики, чтобы вызвать немедленное разрушение, но с течением времени происходит накопление кумулятивных эффектов, кото- i рое может привести к катастрофическому разрушению изделия, i Усталость развивается под действием акустических колебаний j и механических нагрузок. В принципе, улучшенные композици- I онные материалы обладают высоким сопротивлением обычным усталостным воздействиям и могут применяться вместо металлов в условиях высоких усталостных нагрузок. Гибридная компози- ционная конструкция, имеющая только механические крепления, примером которой может служить кессон горизонтального стаби- i лизатора самолета В-1, выдержала в течение 181 ч акустические усталостные воздействия в диапазоне 152. .. 167 дБ без всяких следов разрушения [4]. Выполненную в натуральную величину конструкцию из слоистого пластика выдержали в условиях 282  [c.282]

Известны многочисленные примеры хрупкого разрушения во время службы различных конструкций и деталей машин. Описаны аварии судов, мостов, турбогенераторов, сосудов высокого давления и газопроводов [1—8], ущерб от которых весьма велик. В этой книге рассмотрены только основные особенности, объединяющие эти разрушения. В первую очередь это присутствие значительных концентраторов напряжений в крупных деталях и система нагружения, не позволяющая релаксировать приложенным напряжениям в момент начала роста образовавшейся трещины. Хрупкие разрушения стальных конструкций происходят главным образом при низких температурах, особенно, если элементы конструкции имеют толстые сечения, но разрушаться хрупко (в инженерном смысле этого слова) могут даже конструкции из элементов очень тонких сечений, выполненных из стали и алюминиевых сплавов, например, разрушение обшивки фюзеляжа самолета Комета (обнаружены большие усталостные трещины). Во всех случаях охрупчивающие дефекты, возникающие при производстве материала, ухудшают ситуацию. Разрушение какого-либо образца может произойти хрупко (т. е. до наступления общего течения), если он содержит концентратор напряжений, локализующий область образования трещины. Поэтому нас будут интересовать главным образом механизм зарождения разрушения перед фронтом существующей трещины или другого концентратора напряжений и связь этого механизма с системой приложенных напряжений. Перед детальным изучением этих вопросов в последующих главах и до перехода к механике разрушения полезно уделить внимание традиционным старым методам определения сопротивления быстрому разрушению, чтобы выяснить их ограниченность.  [c.15]


Контакты с легкими металлами. Контакт между медью и алюминием (или между сплавами, богатыми этими металлами) почти всегда опасен для алюминия (или его сплавов), если место контакта становится влажным. Случаи разрушения по указанной причине наблюдались на пивоваренных, а также и на других заводах. Мэбб полагает, что комбинация меди с алюминием более опасна, чем меди с железом он нашел, что дуралюминовые гайки, находящиеся в контакте с латунными шпильками, испытывали быстрое разрушение в брызгах соленой воды. Анодная оксидация (стр. 418) не предупреждала этого разрушения, тогда как в отсутствии контакта с латунью этот способ защиты оказывался действительным. Если латунная арматура применяется на самолетах, она должна по возможности изолироваться от легких сплавов бакелитом или подобными материалами. В некоторых случаях тщательное покрытие краской служит хорошей мерой предупреждения коррозии у контакта меди с алюминием. Шмидт приводит примеры различных соединений с изолирующими прокладками, для которых применяются дерево, цемент, резина и другие материалы.  [c.659]

Автоколебания — один из самых распространенных видов свободных нелинейных колебаний неконсервативных систем. Часто ими пользуются для создания автоматически действующих незатухающих колебательных систем, как, например, в часах, поршневых двигателях, музьшальных духовых язычковых и смычковых струнных инструментах. Еще чаще автоколебания, возникающие во многих аппаратах и механизмах, оказываются вредными для нормальной работы, а иногда даже и целости последних. Таковы, например, автоколебания в системах автоматического регулирования. Последние уже по самому устройству своему сходны с автоколебательными системами, так что почти всегда при конструировании регуляторов приходится принимать специальные меры к устранению условий, при которых возможно возникновение автоколебаний. Весьма опасными являются автоколебания крыльев и хвостового оперения самолета — флаттер, — возникающие при определенных скоростях полета и приводящие иногда к полному разрушению самолета и его гибели. Много примеров автоколебательных систем приведено в прекрасной книге А. А. Харкевича Автоколебания [53], чтение которой может служить введением в общую теорию автоколебаний .  [c.523]


Смотреть страницы где упоминается термин Самолет Примеры разрушения : [c.471]    [c.7]    [c.47]    [c.147]    [c.25]    [c.275]    [c.322]    [c.39]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.424 , c.425 ]



ПОИСК



Самолет



© 2025 Mash-xxl.info Реклама на сайте