Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единицы условный температурный нул

Подъем температуры калориметра М в данной методике не обязательно выражать в градусах Международной температурной шкалы, его можно выразить в любых условных единицах — условных градусах данного термометра, омах или долях ома (при  [c.44]

Условная прочность, МПа, не менее Относительное удлинение, %, не менее Твердость, единицы Шора Температурный предел хрупкости, °С, не выше  [c.366]

Обозначение резины-номер группы Условная прочность при разрыве, кгс/см Относительное удлинение при разрыве, % (не менее) Твердость в условных единицах Назначение, температурный интервал работоспособности резиновой смеси, С  [c.86]


Для расчета одного режима вулканизации подготавливается исходная информация в соответствии со следующими идентификаторами программы Н — толщина эквивалентной пластины, м КТ — температурный коэффициент вулканизации Кт , ТЭ — температура эквивалентного изотермического режима вулканизации Тэ, °С N — общее число элементарных слоев, выделяемых в эквивалентной пластине N — номер границы между элементарными слоями (номер узловой координаты), для которой при сокращенном объеме выводимой на печать информации печатаются значения температуры и эквивалентного времени вулканизации наряду с такими же величинами для поверхностей эквивалентной пластины TAY — шаг интегрирования по времени Ат, с, задаваемый постоянным либо условным выражением в зависимости от времени, обозначаемого идентификатором TAY ВП — время процесса вулканизации, анализируемое с помощью программы Тв, с Г1, Г2 — тип граничного условия, принимающий значения 1, 2 или 3 соответственно для двух противоположных поверхностей эквивалентной пластины ТО — начальное значение температуры пластины Tq, °С, задаваемое в том случае, если начальная температура эквивалентной пластины не принимается переменной ТН1, ТН2 — начальные температуры соответствующей поверхности эквивалентной пластины, задаваемые в том случае, если формулируется для соответствующей поверхности граничное условие первого рода, °С Т1, Т2 — приращения температуры границ пластины за шаг по времени АГь АГг, °С, при граничном условии первого рода или температуры теплоносителей, контактирующих с соответствующими сторонами пластины, при граничных условиях третьего рода (при граничных условиях второго рода данные параметры пе задаются) AL1, AL2 — коэффициенты теплоотдачи к соответствующим поверхностям пластины ai и а2 при граничных условиях третьего рода, Вт/(м-К), или плотность теплового потока через соответствующую поверхность пластины q[ или q2, Вт/(м -К), при граничных условиях второго рода (при граничных условиях первого рода данные параметры не задаются) ПП — признак вида печати результатов (при ПП = 0 печатается в цикле по времени массив узловых значений температуры и массив значений эквивалентного времени вулканизации, при ПП= 1 печатаются лишь элементы указанных массивов, имеющие индексы 1, N , N - - 1) ЧЦ — число шагов по времени в циклах интегрирования, через которое планируется печатание текущих результатов ПХ, ПТ — признаки задания массивами соответственно линейных координат по толщине пластины, выделяющих элементарные слои, и узловых значений температуры в тех же точках для начального температурного профиля пластины (указанные величины формируются в виде массивов при ПХ=1 и ПТ=1) СИГМА—весовой коэффициент смежного слоя ко второй производной в уравнении теплопроводности, принимающий значения от нуля до единицы в зависимости от выбираемой сеточной схемы интегрирования (возможно задание этого коэффициента в зависимости от критерия Фурье для малой ячейки сетки, значение которого в программе присваивается идентификатору R4) А(Т, К)—коэффициент температуропроводности, для которого задается выражение в зависимости от температуры материала и линейных координат Х[К] и Х[К + 1], ограничивающих элементарный слой эквивалентной пластины L(T, К)—коэффициент теплопроводности для эквивалентной пластины, для которого задается выражение в зависимости от тех же параметров, что и для коэффициента температуропроводности X[N - - 1] — массив линейных координат Xi пластины, i=l, 2, 3,. .., -h 1, который при ПХ = 0 является рабочим  [c.234]


Рис. 7.10. Типичное температурное поведение полуширины БФЛ (а) и соответствующее ей температурное поведение вероятности резонансного туннелирования (б) при е = 5 (1) и 20 (2) е взято в тех же условных единицах, что и 7рь Рис. 7.10. Типичное температурное поведение полуширины БФЛ (а) и соответствующее ей температурное поведение вероятности резонансного туннелирования (б) при е = 5 (1) и 20 (2) е взято в тех же условных единицах, что и 7рь
При измерении температуры калориметра необходимо различать два случая 1) разность температур (например, при измерении теплоемкости) должна быть выражена в градусах Международной температурной шкалы 2) разность температур (например, при сравнительных измерениях, к которым можно отнести почти все измерения теплот химических реакций) может быть выражена в условных единицах, пропорциональных градусу Международной шкалы.  [c.74]

Для относительной оценки вязкостно-температурны свойств различных масел с одинаковой кинематической-вязкостью используется индекс вязкости. Индекс вязкости выражают в условных единицах. При его определении сравнивают пологость кривой изменения вязкости в зависимости от температуры испытуемого масла с аналогичными кривыми двух эталонных масел, имеющих при температуре 98,8 °С ту же вязкость, что и испытуемое масло. Пологость кривых изменения вязкости масла оценивают при температуре 37,8 С. Эталонное масло с наименьшей зависимостью вязкости от температуры (пологая кривая) оценивается индексом вязкости в 100 единиц, с наибольшей зависимостью (крутая кривая) — в О единиц. Индекс вязкости определяют по специальным номограммам или таблицам. Масла с большим значени-  [c.57]

Термодинамическая температурная шкала начинается с абсолютного нуля и в настоящее время является основной. Единицы термодинамической температуры обозначаются знаком К (кельвин), а условное значение ее — буквой Т.  [c.57]

Для уяснения сущности метода конечных разностей рассмотрим расчет стационарного температурного поля в двухмерной области, показанной на рис. 15.1, при заданных начальных и граничных условиях. Разобъем эту область прямоугольной сеткой на элементы с размерами (шагом сетки) Ах и Ку (элементарные ячейки). Полагаем, что теплоемкость каждого элемента с условной толщиной, равной единице, срАхАг/ 1 сосредоточена в центре элемента — его узловой точке. Все узловые точки элемента можно разделить на внутренние, окруженные со всех сторон другими узловыми точками, и граничные, принадлежащие элементам, соприкасающимся с границей области Г, которую приближенно заменяют другой границей Г, проходящей через ближайшие к границе Г узлы сзтки. " -  [c.188]

Как следует из результатов гл. 3-5, обоснованный анализ местных напряжений, оценки прочности и ресурса конструкций АЭС с ВВЭР требует использования уточненных подходов, позволяющих получить распределение напряжений и деформаций в зонах концентрации. Такие подходы оказьшаются необходимыми особенно при температурных нагрузках, когда возникают трудности даже при определении номинальных напряжений вследствие неоднородных температурных полей и теплофизических свойств как по толщине корпуса сосуда давления, так и вдоль их образующей. Эти трудности усугубляются при анализе местной напряженности в зонах концентрации, где при коэффициентах концентрации, превышающих 3 единицы (корпус реактора — патрубковая зона, тройниковые соединения трубопроводов), возможно появление пластических деформаций. В связи с этим условно-упругие напряжения, соответствующие пластическим деформациям, оказьшаются значительно выше упругих, полученных через номинальные напряжения и теоретические коэффициенты концентрации.  [c.217]


Солемеры предназначаются для измерения концентраций солей, щелочей и кислот в воде. Концентрация определяется по электропроводимости растворов в условных единицах, эквивалентных (по электропроводимости) концентрации хлористого натрия Na l в воде. Электропроводимость существенно зависит от температуры раствора, по-поэтому необходимо либо обеспечить у прибора, измеряющего солесодержание раствора — солемера, автоматическую температурную компенсацию, либо осуществлять измерение при определенной постоянной температуре раствора.  [c.241]

В гл. 3 при рассмотрении понятия внутренние энергоресурсы (ВЭР) была отмечена некоторая условность отнесения к ВЭР тех или иных энергоносителей. Так, по инструкции ЦСУ при подсчетах ресурсов ВЭР к ним относится физическая теплота уходящих газов при температуре 300" С и выше. Основанием к установлению такого температурного предела является мнение, что при более низких температурах использование теплоты уходящих газов экономически не оправдывается. Но такое суждение является необоснованным. Как показывают расчеты и практика, например, в паровых котлах уходящие дымовые газы экономически выгодно охлаждать, как правило, до 140 — 160° С и даже ниже. При этом уловленная единица теплоты в уходящих газах дает экономию такой же единицы теплоты топлива. Но такую же экономию топлива дает и улавливание единицы теплоты уходящих газов технологических агрегатов, если уловленная теплота используется внешними потребителями (например, КУ и т. п.). Если же уловленная единица теплоты используется на подогрев компонентов горения в высокотемпературных печах, то экономия теплоты топлива еще больше за счет увеличения доли отдачи теплоты в высокотемпературном рабочем пространстве печй (см. 2.4).  [c.133]

Термодинамическая температурная шкала, осуществляемая с помощью газовых термометров, базировалась на двух основных (реперных) точках температуре равновесия между льдом и водой (точка таяния льда) и температуре равновесия между водой и ее паром при нормальном атмосферном давлении (точка кипения воды). Первой точке условно приписывалась цифра О (точно), а второй — цифра 100 (точно). Интервал температур между этими основными точками делился на 100 равных частей, и одна сотая интервала получила название градуса как единицы измерения термодинамической температуры или масштаба термодинамической температурной шкалы. Из (2.5) при V = onst  [c.19]

Непосредственное измерение температуры невозможно, так как она характеризует состояние термодинамического равновесия макроскопической системы, является мерой теплового движения, и для ее измерения нельзя ввести эталон, как в случае аддитивных величин (длины, массы, времени). Возможность определения температуры основана на том, что при изменении температуры изменяются внутренние параметры системы, и измерение какого-либо из этих параметров позволяет нс1ходить температуру с помощью уравнения состояния системы [1.5]. Единицы измерений (градусы) и способы их стандартизации выбираются путем соглашения между экспертами. Единица измерения термодинамической температуры (кельвин) определяется как 1/273,16 температуры, соответствующей тройной точке воды. Направление температурной шкалы также выбрано условно считается, что при сообщении телу энергии при постоянных внешних параметрах его температура повышается [1.6].  [c.8]

Тот же метод был применен для термометрии поверхности при атмосферном давлении в диапазоне 25-ь120 °С [4.42]. Поверхность пленок серебра облучали импульсами Nd YAG лазера (Л = 1064 нм) длительностью 10 НС и энергией 200 мкДж, при этом в отраженном свете регистрировали излучение с длиной волны 532 нм. Площадь сечения пучка на поверхности металла 1 см , угол падения света с р-поляризацией равен 70°. Погрешность измерения составила 5 °С. Температурная зависимость интенсивности (/) второй гармоники в условных единицах является линейной и аппроксимируется выражением I 1,32 —  [c.107]

Как известно, измерепия на интеграторе ЭИ-11 получаются в условных единицах — процентах шкалы потенциометра. Для перехода от измеренных данных, полученных на модели, к данным для исходной системы (см. рис. 15) нужны еще масштабные коэффициенты. Масщтабный коэффициент для температурного напора независимый. Его величиной мы задаемся после опробования модели, предполагая известным соответствующий температурный напер в исходном опыте  [c.49]

В двухслойных средах, образующихся при нагреве стальных изделий, присутствуют оба эффекта. Однако изменение р происходит плавно в соответствии с зависимостью р (Г). Рост р, от единицы до некоторого значения р,к также не является скачкообразным, поэтому говорить о двуслойности можно только условно. Характерные распределения У и Я для этого случая приведены на рис. 3.3, в. Достаточно точно они могут быть получены только численными методами на ЭВМ. Однако в приближенных расчетах можно принять, что Pi = р2, а р, меняется скачком от = 1 до Цк при температуре Кюри, равной для углеродистых сталей примерно 750 °С. Значения Ик определяются в функции Як без учета температурной зависимости р, = / (Г). Обычно принимается также, что вторая среда является однородной с Ца = Ик = onst. Тогда коэффициент К становится вещественным. Методика расчета для этого случая приведена в [2, 9]. Она дает хорошие результаты при di/6i>0,2, что почти всегда соблюдается при поверхностной закалке. Однако в ряде случаев, например при нагреве ферромагнитных тел с немагнитным покрытием, неучет переменности р,2 может дать заметную погрешность и необходим расчет по полной формуле  [c.119]


Смотреть страницы где упоминается термин Единицы условный температурный нул : [c.14]    [c.17]    [c.171]    [c.178]   
Машиностроительная гидравлика Справочное пособие (1963) -- [ c.116 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте