Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прямолинейность Отклонения предельные

Сопоставление предельных погрешностей различных методов измерения прямолинейности с предельными отклонениями по ГОСТ 10356—63  [c.180]

Погрешность шагового метода зависит от применяемых средств измерения при применении уровней погрешность шагового метода составляет примерно 0,01 мм к на I м длины [15]. Сопоставление предельных погрешностей различных методов измерения прямолинейности с предельными отклонениями по ГОСТ 10356—63 дано в табл. 41 [18].  [c.181]


Механизм определяется тремя независимыми параметрами а, Ь и ё. Для того чтобы траектория точки М имела наименьшее отклонение от прямой, необходимо и достаточно, чтобы было выполнено соотношение Зс —а = 2Ь. При этом соотношении симметричная шатунная кривая точки М имеет с прямой шесть точек пересечения, а предельное отклонение достигается семь раз с последовательно чередующимися знаками. Длина стойки ё может изменяться в пределах от За до 1,55а. При ё = 2,22а отнощение максимального отклонения от прямой линии к длине прямолинейного участка не превосходит 0,001, т. е. на длине /=100 мм отклонение будет не более 0,1 мм. Такое отклонение нельзя обнаружить обычными графическими построениями.  [c.172]

Предельные отклонения от плоскостности и прямолинейности  [c.121]

X н U о к Предельные отклонения (в мкм) от прямолинейности поверхности  [c.180]

Предельные отклонения от плоскостности и прямолинейности (по ГОСТ 10356—63)  [c.119]

Обозначение предельного, допустимого отклонения от прямолинейности образующих (не более 0,02 мм).  [c.29]

Обозначение предельного допустимого отклонения от плоскостности, т. е. откло-002-100 нения от прямолинейности  [c.30]

Примеры назначения предельных отклонений от плоскостности и прямолинейности  [c.648]

Предельные отклонения от плоскостности н прямолинейности приведены в табл. 27, а примеры применения степеней точности формы плоских поверхностей — в табл. 28. Ряды допусков приведены ориентировочно. (Их уточнение будет произведено при утверждении разрабатываемого стандарта на отклонения формы и расположения поверхностей).  [c.118]

На рис. 2.13 изображены эскизы комплекта калибров для контроля конусов, входящих в коническое соединение. Основные размеры и предельные отклонения калибров-втулок и контрольных калибров-пробок должны соответствовать размерам, указанным в табл. 2.17 калибров-пробок — размерам, указанным в табл. 2.18. Допуски формы конических поверхностей калибров по прямолинейности образующей от 0,6 до 3,0 мкм но круглости от 0,6 до 2,0 мкм. Комплект калибров для изделий 4-й и 5-й степеней точности должен состоять из калибра-пробки и калибра-втулки, для изделий 6-й и 7-й степеней точности — из калибра-пробки,  [c.65]

Расстояния между параллельными размерными линиями должны быть не менее 7 мм, а между размерной линией и определяемым ею прямолинейным отрезком должны быть не менее 10 мм. Размерные числа наносят над размерной линией возможно ближе к ее середине. Размерные числа и предельные отклонения не допускается разделять и пересекать какими бы то ни было линиями. В местах нанесения размерного числа осевые, центровые линии и линии штриховки прерываются. Размеры нескольких одинаковых элементов изделия, как правило, наносят один раз с указанием на полке линии-выноски количества этих элементов.  [c.74]


ГОСТ 25346—82 устанавливает два способа нормирования допуска диаметра конуса. По первому способу устанавливают допуск диаметра Тв, одинаковый в любом поперечном сечении конуса и определяющий два предельных конуса, между которыми должны находиться все точки поверхности действительного конуса (рис. 2.13). Допуск Тв ограничивает также отклонения угла конуса и отклонения формы конуса, если эти отклонения не ограничены меньшими допусками. При втором способе нормирования устанавливают допуск Тв только в заданном сечении конуса. Этот допуск не ограничивает отклонения угла и формы конуса. Допуск формы РТ определяется суммой допусков круглости поперечного сечения конуса и прямолинейностью его образующих. Их выбирают соответственно по диаметру большого основания конуса или диаметру в заданном сечении конуса.  [c.85]

Бесшкальные инструменты. К ним относятся лекальные и поверочные линейки (ГОСТ 8026—75), предназначенные для контроля отклонений от прямолинейности на просвет или посредством щупа с собственным отклонением от прямолинейности от 0,6 (класс 0 50 мм) до 3 мкм (класс 1 500 мм) синусные линейки (ГОСТ 4046—80) для косвенных измерений наружных углов до 45° с погрешностью от +5" до 15" шаблоны с выпуклым и вогнутым радиусами (ГОСТ 4126—82) для контроля на просвет с предельными отклонениями от +20 до +40 мкм щупы (ГОСТ 882—75) для контроля зазоров по вхождению лезвий разных толщин угольники поверочные 90° (ГОСТ 3749—77) для контроля прямых углов на просвет поверочные плиты (ГОСТ 10905—86) для контроля отклонений от плоскостности по краске образцы шероховатости поверхности (ГОСТ 9378—75) для визуального контроля шероховатости поверхности деталей.  [c.201]

Предельные отклонения от прямолинейности перемещения (шум столика) на длине хода 0,5 мм (длина ячейки). 0,03 жк Шум столика для вертикального перемещения на длине  [c.145]

Допуски (предельные отклонения) устанавливались только для плоскостности, прямолинейности, формы цилиндрических поверхностей, параллельности, перпендикулярности, торцового и радиального биения.  [c.272]

Поверхности. Предельные отклонения от прямолинейности и от плоскостности. Значения  [c.273]

Общие допуски прямолинейности и плоскостности для элементов с неуказанными на чертеже предельными отклонениями (общими допусками) размеров приведены в табл. Г1.  [c.628]

Г1. Общие допуски прямолинейности и плоскостности для элементов с неуказанными на чертеже предельными отклонениями  [c.628]

Числовые значения допусков (предельных отклонений) формы цилиндрических поверхностей приведены в табл. 3.8. Ряды допусков распространяются на все виды отклонений. Допуски прямолинейности образующей или оси в тех случаях, когда они рассматриваются независимо от допуска цилиндричности или допуска размера, должны назначаться по табл. 3.3.  [c.298]

Предельные отклонения от плоскостности и прямолинейности рабочих граней длинной стороны в мк ( )  [c.277]

Это же решение с центрированной волной Прандтля—Майера можно использовать, если считать, что прямолинейная стенка, вдоль которой движется со сверхзвуковой скоростью газ, обрывается в точке О, и газ истекает в область с пониженным давлением. Прямолинейную границу вправо от точки О следует при этом считать свободной границей. При заданном давлении во внешнем пространстве скорость на свободной границе находится из интеграла Бернулли, а угол отклонения потока в центрированной волне—из соотношения (11.1). В частности, при истечении газа в вакуум угол отклонения свободной границы будет равен предельному.  [c.289]

Если установка вала на подшипниках со сферическими поверхностями неприемлема, то соблюдают требуемый уровень точности путем назначения соответствую-Ш.ИХ допусков на форму и расположение поверхностей деталей. Например, на рис. 2.22 приведен чертеж двухопорного вала, на котором для шеек А и В указаны не только предельные отклонения ротора, но и допуски цилиндричности (поз. /, 5), перпендикулярности (поз. 3, 4) и соосности (поз. 2, 6). Избыточные локальные связи возникают при установке валов и осей на несколько опор (рис. 2.23, а). Сборка и эксплуатация гаких конструкций возможна, если обеспечить расположение осей подшипников А, А, А" (рис. 2.23, б) на одной прямой. Компенсация возможных отклонений от прямолинейности происходит за счет наличия зазоров между поверхностями элементов кинематической пары деформации звеньев или элементов кинематических пар (например, резиновых или резинометаллических деталей) изнашивания элементов кинематических пар при сборке, обкатке или эксплуатации. В реальных конструкциях пар происходят явления, обусловленные сочетанием этих факторов.  [c.46]


Как видно из анализа схем армирования только прямолинейными волокнами, отклонение направлений укладки волокон от однонаправленной и плоской схемы существенно снижает объемный коэффициент армирования материала. При трех взаимно ортогональных направлениях укладки волокон предельный коэффициент армирования р-пр снижается по сравнению со слоистой структурой на 25 %. Заметим, что для последней при любом числе направлений армирования характерно неизменное значение предельного коэффициента армирования Рпр — 0,785, равное коэффициенту однонаправленного материала с прямоугольной схемой укладки волокон.  [c.20]

Предельные отклонения. формы и расположения поверхностей (допуски ци-пиндричносчи, круглости, профиля продольного сечения, плоскоегности, прямолинейности и параллельности) назначаются в тех случаях, когда они должны быть меньше допуска размера, т. е. при наличии особых требований К точности деталей  [c.106]

Обеспечение точности при изготовлении деталей и сборке машин. Для обеспечения оптимальной надежности машин не следует стремиться получать предельную точность, предусмотренную нормами на отдельные механизмы, сборочные единицы и машину в целом. В практике современного отечественного и зарубежного машиностроения для обеспечения запаса точности наиболее часто при изготовлении используется не более 50% допуска на размер. Так, например, если по нормали биение шпинделя металлорежушего станка допускается 5 мкм, то фактически оно не должно превышать 1,2 мкм при норме прямолинейности стола 10 мкм не допускается отклонение более 2— 3 мкм. Такая практика позволяет сохранить точность работы станка на более длительный, как правило, оптимальный срок его службы. В связи с этим под точностью мы будем понимать степень соответствия изготовляемых деталей, механизмов и машин предусмотренным техническими условиями и чертежами допустимым отклонениям от поля допуска геометрических и физико-механических свойств.  [c.173]

Как известно, гистерезис есть отклонение от закона Гука, устанавливающего линейную зависимость между напряжением и деформацией. Он имеет место в большинстве материалов, подвергающихся воздействию знакопеременных усилий. На диаграмме (рис. 17, а) закон Гука должен быть изображен наклонной прямой А1А3, и тогда точка, отображающая напряженное состояние волокна вала от попеременного действия растяжения и сжатия, должна была бы двигаться вверх и вниз вдоль этой прямой. В действительности же зависимость между напряжением и деформацией изображается длинной узкой фигурой, весьма похожей на эллипс, которую точка обходит всегда по часовой стрелке (эллипс, изображенный на рис. 17, а, имеет сильно преувеличенную ширину на самом деле он настолько узок, что его едва можно отличить от прямолинейного отрезка А А . Ширина петли зависит от заданных при исследовании предельных значений напря-  [c.57]

Рис, 8. Примеры условных обозначени предельных отклонений от прямолинейности (а), параллельности (б) и соосности (б)  [c.727]

Допуски среднего диаметра являются суммарными, кроме резьбовых деталей в посадках с натягом, получаемых сортировкой на группы. Для этих деталей допуски среднего диаметра не включают диаметральных компенсаций отклонений шага и угла наклона боковой стороны профиля. Верхнее отклонение внутреннего диаметра d, наружной резьбы (определяемое по точке перехода прямолинейной боковой стороны профиля к впадине резьбы) равно верхнему отклонению среднего диаметра d . Верхнее отклонение наружного диаметра D внутренней резьбы стандартами СЭВ не регламентируются. Для резьб в переходных посадках и посадках с натягом установлены предельные отклонения шага и угла наклона боковой стороны профиля (табл. 4.32), а также предельные отклонения формы — разность между наибольшим и наименьшим действительными средними диаметрами одной разьбовой детали не должны превышать 25% от допуска среднего диаметра. При этом обратная коиусообразность (конусность) не допускается.  [c.22]

Критическая и предельно достижимая (при полном отклонении органов поперечного управления) угловые скорости крена зависят от числа М в режиме прямолинейного горизонтального полета самолета (рис. 3). Как видно из рисунка, при М М] возникновение неустойчивости самолета, обусловленное влиянием угловой скорости крена, невозможно, а при M]>Mi, когда угловые скорости крена превысят критические, может возникнуть неустойчивость самолета. В рассматриваемом случае неустойчивость самолета при кренении обусловлена падением запаса путевой статической устойчивости под влиянием сжимаемости.  [c.114]

Отклонения от прямолинейности перемещения силового й-ола в горизонтальной плоскости Дф вызывают отклонения от плоскостности в продольном направлении детали, Анплфпр предельная величина которых на длине хода стола определяется по формуле  [c.715]

Термины, определения и условные обозначения, относящиеся к отклонениям и допускам формы номинально цилиндрических поверхностей, приведены в табл. 2.16. При нормировании в основном должны применяться допуски, комплексно ограничивающие совокупность отклонений формы либо всей поверхности допуск цилиндричности), либо отдельных ее сечений (допуск круглости, допуск профиля продольного сечения), либо отдельных геометрических элементов поверхности (допуск прямолинейности образующей или оси) независимо от того, какова будет форма реальной поверхности. Широко применявшиеся ранее понятия о частных видах отклонений формы в. сечениях поверхности (табл. 2.17) в дальнейшем могут использоваться для описания действительного характера отклонений, прн выборе упрощенных методов измерения, но связаны с представлением об определенном геометрическом характере отклонения. Их не рекомендуется использовать для назначения допусков, за исключением т х случаев, когда по условиям работы важно ограничить отклонения именно соответствующего характера или установить для них дифференцированное значение допусков. Условные обозначения на чертежах для них не предусмотрены. Числовые значения допусков (предельных отклонений) формы цилиндрических поверхностей даны в табл. 2.18. Ряды допусков распространяются на все виды допусков как для поверхности, так и для сечений и на частные виды отклонений. Необходимые различия в допусках цилиндричности и допусках формы в сечепиях (например, допуске круглости) для одной и той же поверхности обеспечиваются выбором их из различных степеней тбчности. Допуски прямолинейности образующей, или оси в. тех случаях, когда они рассматриваются независимо от допуска цилиндричности или допуска размера должны назначаться по табл. 2.11.  [c.418]



Смотреть страницы где упоминается термин Прямолинейность Отклонения предельные : [c.231]    [c.76]    [c.79]    [c.63]    [c.730]    [c.273]    [c.161]    [c.47]    [c.24]    [c.24]    [c.47]    [c.43]    [c.21]   
Справочник металлиста Том 2 Изд.2 (1965) -- [ c.648 ]

Краткий справочник металлиста (0) -- [ c.336 ]



ПОИСК



309 — Прямолинейность

Отклонения предельные валов от плоскостности и прямолинейности — Таблицы

Отклонения предельные от плоскостности и прямолинейност

Предельное отклонение

Предельные отклонения от плоскостности и прямолинейности



© 2025 Mash-xxl.info Реклама на сайте