Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрощение в уравнении равновесия пар — жидкость

Производя очевидные упрощения и повторяя аналогичные выкладки для осей у я Z, получим дифференциальные уравнения равновесия жидкости в проекциях на оси координат  [c.26]

Совместное решение шести уравнений равновесия для вязкой жидкости, уравнения неразрывности и трёх уравнений движения (см. т. 1, сгр. 805—806) после ряда упрощений приводит к основному диференциальному уравнению гидродинамической теории смазки  [c.570]


УПРОЩЕНИЯ В УРАВНЕНИИ РАВНОВЕСИЯ ПАР — ЖИДКОСТЬ  [c.269]

Что же в итоге дала эпоха становления и утверждения классической механики, эпоха от Галилея до Ньютона, в учении о колебаниях и волнах Пользуясь современной нам терминологией, мы можем подытожить труды целого столетия следующим образом. Во-первых, была построена теория малых колебаний (около положения равновесия) системы с одной степенью свободы (маятник) как незатухающих, так и при наличии вязкого сопротивления. Теория была построена в геометрической форме, ее еще предстояло перевести на язык анализа и представить как результат интегрирования дифференциального уравнения. Во-вторых, была дана в основном оправдавшая себя схема распространения волн сжатия и разрежения в идеальной жидкости, выявлена зависимость скорости распространения этих волн от упругости (давления) и плотности среды. В-третьих, была дана (слишком) упрощенная физическая схема образования волн на поверхности тяжелой жидкости. В-четвертых, был найден плодотворный принцип для построения фронта распро-  [c.261]

Это уравнение налагает требование динамического равновесия при распределении скорости в каждой системе потока между силами инерции и силами внутреннего трения, а также внешними усилиями и распределением давлений внутри жидкости. Несмотря на вполне допустимое упрощение, т. е. пренебрежение инерционными усилиями, вследствие низких скоростей, обычно характеризующих течение в пористой среде, математические трудности применения этих уравнений к пористой среде совершенно непреодолимы для практических целей. Когда Дарси 1 в 1856 г. заинтересовался характеристикой течения через песчаные фильтры, он обратился к экспериментальному изучению проблемы и отсюда пришел к реальному обоснованию количественной теории движения однородных жидкостей в пористой среде. Его классические эксперименты дали весьма простой вывод, в настоящее время обычно называемый законом Дарси, а именно дебит Q воды через слой фильтра прямо пропорционален площади А песка и разности ЛЬ между давлениями жидкости при входе и выходе из слоя и обратно пропорционален толщине L слоя. Выражая эту зависимость аналитически, имеем  [c.58]

Уравнение (8.2.1) — это строгое фундаментальное соотношение для равновесия пар—жидкость. Уравнения (8.2.2), (8.2.3) и (8.3.1) тоже можно считать строгими, без каких-либо упрощений, кроме тех, которые упомянуты в следующем за уравнением (8.2.1) абзаце. Подстановка выражений (8.2.2), (8.2.3) и (8.3.1) в уравнение (8.2,1) дает  [c.269]


Что же касается смещения центра элемента, то, как это легко заметить на основе предыдущих примеров вывода уравнений бифуркации (и, в частности, уравнений (1.1) и (1.6)), это смещение при характерных для таких проблем условиях бесконечной малости само по себе в уравнение равновесия не входит и впоследствии возникает при расшифровке угла поворота. Это связано с ррене-брежимой малостью изменения характерных размеров элемента (длины отрезка осевой линии). При написании уравнений равно весия для большинства бифуркационных задач, вообще говоря можно учитывать лишь повороты элемента как жесткого целого Этот минимальный шаг отхода от геометрически линейного при ближения обычно оказывается достаточным для правильной по становки бифуркационной проблемы и, в частности, тех задач, что рассматриваются в дальнейшем. Необходимо, однако, отметить, что в некоторых случаях такое упрощение может оказаться чрезмерным. Так, в рассмотренной выше задаче о стержне, погружаемом в жидкость, неучет изгибания элемента приводит к невозможности отыскания критического параметра.  [c.65]

Более ста последуюш их лет развитие науки о равновесии и движении жидкости происходило по двум различным направлениям. Одно направление развивалось по линии строгих математических решений, используя уравнения Эйлера и принимая при этом ряд допущений (Лагранж, Лэмб, Навье, Стокс, И. С. Громека и др.). Однако наличие ряда существенных упрощений не позволило использовать полученные этим методом результаты для решения конкретных практических задач. Это заставило ученых и инженеров прибегать к экспериментированию и на основании опытных данных создавать расчетные формулы для решения разнообразных гидравлических задач, выдвигавшихся бурно развивавшейся техникой (Шези, Буссинек, Дарси, Базен, Вейсбах, Дюпюи и др.). Таким образом, независимо от аэрогидромеханики практическая гидравлика продолжала свое развитие как опытная наука, опережая первую в целом ряде областей. Однако без наличия серьезного математического аппарата она, естественно, не в состоянии была обобщить данные сложного эксперимента.  [c.7]

Прямые сведения о теплофизических свойствах перегретых жидкостей отсутствуют. Не выяснены экспериментальные возможности проведения измерений в метастабильной области. Например, нет данных о том, как меняются плотность и сжимаемость веш,ества при больших п регревах. Существующие непрерывные уравнения состояния ван-дер-ваальсовского типа дают для изотерм характерную петлю, на которой точка перехода через линию насыщения ничем не выделяется среди соседних точек. Равновесие жидкой и газообразной фаз определяется из дополнительного условия Максвелла, которое эквивалентно требованию (1.1). С другой стороны, как было отмечено в 3, не слишком упрощенные разработки статистической теории реального газа на основе ансамбля Гиббса не описывают метастабильных состояний, но в принципе содержат линию равновесной конденсации (см. также [213, 2141). В этом случае любая докритическая изотерма имеет на границе двухфазной области угловую точку.  [c.230]


Смотреть главы в:

Свойства газов и жидкостей Издание 3  -> Упрощение в уравнении равновесия пар — жидкость



ПОИСК



283 — Уравнения жидкости

Жидкость равновесие

Равновесие жидкость—жидкость

Упрощение уравнений

Упрощений

Уравнения равновесия жидкостей

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте