Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прямолинейное распространение света

НИИ решить такую задачу. Вопрос этот решается с помош,ью так называемого принципа Гюйгенса — Френеля. Последний позволяет также объяснить в рамках волновой теории прямолинейное распространение света в однородной среде.  [c.119]

Увеличение ширины щели (Ь > Ji) приводит к сужению центрального максимума и увеличению яркости. При 6 1 мы получаем в центре резкое изображение источника света, т. е. имеет место прямолинейное распространение света.  [c.141]


Закон прямолинейного распространения света в однородной среде как следствие принципа Ферма. Ввиду того что минимальное расстояние между двумя точками есть прямая линия, соединяющая эти точки, прямолинейное распространение света в однородной среде является прямым следствием принципа Ферма.  [c.168]

Закон прямолинейного распространения света в однородной среде.  [c.172]

Закон прямолинейного распространения света.  [c.13]

Закон прямолинейного распространения света. В однородной среде свет распространяется по прямым линиям.  [c.13]

Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям. Так, в опыте, изображенном на рис. 1.2, мы получим хорошее изображение при размере отверстия около 0,5 мм изображение будет очень несовершенным при отверстии 0,02—0,03 мм. Изображения совсем не получится и экран будет освещен практически равномерно при размерах отверстия около 0,5—1 мкм. Отступления от закона прямолинейного распространения света рассматриваются в учении о дифракции.  [c.14]

Рис. 1.2. Прямолинейное распространение света получение изображения с помощью малого отверстия. Рис. 1.2. <a href="/info/385721">Прямолинейное распространение света</a> получение изображения с помощью малого отверстия.
В начале XIX века стала складываться последовательно развитая система волновой оптики. Главную роль при этом сыграли труды Юнга и Френеля. Френель (1815 г.) уточнил принцип Гюйгенса, дополнив его принципом интерференции Юнга, с помощью которого этот последний дал в 1801 г. удовлетворительное толкование окраски тонких пластинок, наблюдаемых в отраженном свете. Принцип Гюйгенса — Френеля не только вполне удовлетворительно объяснил прямолинейное распространение света, но и позволил разрешить вопрос о распределении интенсивности света  [c.20]

Из сказанного выше должно быть ясным, что большое количество понятий, связанных с переносимой светом энергией, обусловлено, в конечном итоге, законом прямолинейного распространения света, в силу которого световая энергия может переноситься по-разному в различных направлениях и через элементы поверхности, находящиеся в разных точках. Наиболее дифференцированной характеристикой светового поля служит яркость (или интенсивность), определяющая мощность, распространяющуюся в заданном направлении вблизи заданной точки пространства. Сила света описывает мощность, также распространяющуюся в заданном направлении, но от всей поверхности протяженного источника. Освещенность и свети-г.юсть характеризуют мощность, которая распространяется вблизи какой-либо определенной точки пространства во всех направлениях. Наконец, наиболее интегральной характеристикой является поток, — мощность, переносимая во всех направлениях через всю заданную поверхность. Приведенные соображения наглядно иллюстрируются соотношениями между введенными величинами и яркостью  [c.50]


Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна без истолкования с волновой точки зрения фундаментального и хорошо подтвержденного опытом закона прямолинейного распространения света.  [c.150]

Модифицированный таким образом принцип Гюйгенса—Френеля становится основным принципом волновой оптики и позволяет исследовать вопросы, относящиеся к интенсивности результирующей волны в разных направлениях, т. е. решать задачи о дифракции света (см. ниже). В соответствии с этим был решен, вопрос о границах применимости закона прямолинейного распространения света, и принцип Гюйгенса—Френеля оказался применимым к выяснению закона распространения волн любой длины.  [c.151]

В частности, плоская волна, распространяясь в такой среде, останется плоской. Это заключение можно подтвердить рассуждениями, подобными тем, которые служат (по Френелю) для объяснения прямолинейного распространения света. Если же однородность среды нарушена какими-либо включениями или вследствие каких-либо процессов, т. е. если в среде встречаются области, показатель преломления которых отличается от показателя преломления остальной части, то на таких неоднородностях должны возникнуть дифракционные явления, и часть света дифрагирует (отклоняется) от своего первоначального направления.  [c.227]

Соотношение ф Х/О показывает, что угловое отклонение, нарушающее прямолинейность распространения света в однородной среде, может быть весьма мало, если размеры отверстия или экрана велики по сравнению с длиной волны "к. Поэтому в реальной оптике, где к — конечная величина, отступления от законов геометрической оптики должны быть тем меньше, чем больше размеры О.  [c.273]

Одним из основных законов оптики является закон прямолинейного распространения света в однородной среде, выполняющийся в тех случаях, когда по тем или иным причинам дифракционные эффекты несущественны. В нелинейной оптике указанный закон, вообще говоря, имеет дополнительные ограничения применимости. Пусть показатель преломления зависит от интенсивности света при достаточно больших ее значениях. Если освещенность в ноне-  [c.820]

Величина определяемая этим соотношением, носит название длины самофокусировки. Она пропорциональна начальному радиусу пучка и обратно пропорциональна амплитуде поля на его оси. Поскольку освещенность пропорциональна то можно сказать, что 4ф обратно пропорциональна квадратному корню из максимальной освещенности в сечении пучка. Кроме того, уменьшается с ростом коэффициента нелинейности 2- Все перечисленные закономерности физически вполне прозрачны чем меньше и чем больше Ап = 2 4о, тем резче изменяется показатель преломления в пределах сечения пучка и тем сильнее отклонение от прямолинейного распространения света.  [c.822]

Эти работы, завершившиеся блестящим предсказанием конической рефракции, представляют основное из того, что сделано Гамильтоном в оптике. Он подошел к проблемам геометрической оптики с очень общей точки зрения, стремясь найти такое математическое соотношение, к которому сводились бы все проблемы этой науки. Он исходил при этом из мысли, что этап индукции, который он, как мы выше видели, считал в развитии всякой науки предшествующим этапу дедукции, для геометрической оптики уже завершен. История этой науки, по мнению Гамильтона, уже выявила наиболее общее свойство оптических явлений, которое, будучи сформулировано математически, должно быть положено в основу геометрической оптики. Излагая в кратком очерке историю оптики, Гамильтон прежде всего подчеркивает прямолинейность распространения света. Этот опытный факт в конце концов выкристаллизовывается в следующее важное положение, которое является фундаментальной теоремой оптики Связь между освещением и освещающим телом, или между рассматриваемым объектом и воспринимающим глазом, осуществляется посредством постепенного, но очень быстрого распространения некоторого предмета или влияния, или состояния, называемого светом, от светящихся или видимых тел вдоль математических или физических линий, называемых обычно лучами и оказывающихся при самых общих условиях точно или приближенно прямыми ).  [c.807]


Для объяснения законов прямолинейного распространения света были предложены две основные теории. Это — теории Ньютона и Гюйгенса. По мнению Гамильтона, обе они основываются на сравнении, аналогии. Первая сравнивает распространение света с движением частиц применяя к ним принцип инерции, эта теория легко объясняет факт прямолинейного распространения света. Вторая же сравнивает распространение света с распространением звука в воздухе и. водяными волнами. По мнению Гюйгенса, нет такой вещи в обычном смысле слова, такого тела, которое двигалось бы от Солнца к Земле или от видимого объекта к глазу а есть состояние, движение, возмущение, которые были сначала в одном месте, затем в другом ). Эта теория утверждает существование эфира — некоторой среды, непрерывно заполняющей пространство. Развитая и обогащенная Френелем и Юнгом, она дает как будто бы большее согласие с опытными фактами, чем теория Ньютона.  [c.807]

Закон прямолинейного распространения света в однородной среде свет распространяется прямолинейно, Линия, вдоль к-рой переносится световая энергия, наз. лучом. В однородной среде лучи света представляют собой прямые линии.  [c.438]

Зеркальное О. с. характеризуется связью положений падающего и отражённого лучей 1) отражённый, преломлённый и падающий лучи и нормаль к плоскости падения компланарны 2) угол падения равен углу отражения. Совместно с законом прямолинейного распространения света эти законы составляют основу геометрической оптики. Для понимания физ. особенностей, возникающих при о. с., таких, как изменение амплитуды, фазы, поляризации света, используется эл.-магн. теория света, в основе к-рой лежат ур-ния Максвелла. Они устанавливают связь параметров отражённого света с оптич. характеристиками вещества — оптич. постоянными пик, составляющими комплексного показателя преломления п = п — гх п— отношение скорости в вакууме к фазовой скорости волны в веществе, и — гл. безразмерный показатель поглощения. Параметры отражённого света могут быть получены из ур-ния волны, к-рое удовлетворяет решению ур-ний Максвелла  [c.510]

Изображенная на рисунке картина эволюции пучков легко может быть понята исходя из того, что дифракция — отклонение от прямолинейности распространения света — проявляется тем сильнее, чем меньше сечение пучка. По этой причине кривизна окаймляющих пучки на рисунке линий максимальна у перетяжек, уменьшаясь по мере роста ширины пучков. Та же причина приводит к тому, что у пучка с большой шириной перетяжки граничные линии в зоне последней обладают меньшей кривизной.  [c.32]

Объяснение дифракции света по Френелю может быть сделано с помощью рис. 24. Это отступление от законов прямолинейного распространения света, но оно является естественным следствием волновой  [c.34]

ОСНОВНЫЕ ЗАКОНЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ Закон прямолинейного распространения света  [c.96]

Уравнение (1) показывает, что вещество и энергия являются лишь формами одной и той же объективной сущности — материи. Свет так же материален, как материальны все энергии и вещества. Световое излучение вызывается определенными процессами внутри атома или молекулы, возбуждаемых каким-либо видом энергии, например тепловым. Свет обладает одновременно корпускулярным и волновым свойствами. Одни явления (дифракция, интерференция, поляризация света) объясняются волновой природой света, другие (прямолинейность распространения света, поглощение, фотоэлектрический эффект Столетова и т. д.) — корпускулярной теорией. Однако между этими двумя теориями имеется определенная связь — они дополняют друг друга при изучении всех законов оптики.  [c.26]

При Го = 1м, Я = 5-10 см (зеленый свет) Дсг = 1 мм Следовательно, в результате интерфере1щин действие всех зон, кроме первой, сводится к нулю и распространение света от S к В происходит так, будто световой поток идет внутри узкого канала вдоль SB, т. е. прямолинейно. Следовательно, волновой при тип Гюйгенса — Френеля позволяет объяснить прямолинейное распространение света в однородной среде.  [c.123]

Еще с древних времен известны некоторые основные законы геометрической оптики — прямолинейное распространение света в однородной среде, распространение через границу двух прозрачных сред с отличающимися показателями преломления (закон преломления света) и отражение от плоской зеркальной поверхности (закон отражения света). А как быть, если распространение света происходит в среде с псирерывно меняющимся показателем преломления Существует ли какая-нибудь общая закономерность, описывающая распространение света во всех вышеперечисленных случаях Ответ на подобный вопрос был дан французским математиком Ферма в середине XVII в.  [c.167]

Первой задачей, которую должен был рассмотреть Френель, выдвинув новую формулировку принципа Гюйгенса, явилась задача о прямолинейном распространении света. Френель решил ее путем рассмотрения взаимной интерференции вторичных волн, применив чрезвычайно наглядный прием, заменяющий сложные вычисления и имеющий общее значение при разборе задач о распространении волн. Метод этот получил название метода зон Френелят  [c.153]

Приведенные выше рассуждения об интерференции вторичных волн аналогичны использованным во френелевой теории прямолинейного распространения света. Если френелевы вторичные волны испускаются фиктивными источниками, то при рассеянии излучатели реальны и представляют собой атомы и молекулы среды. Однако для однородности среды нужно, чтобы в малых, но равных объемах содержалось одинаковое число излучателей одного сорта. Но такую застывшую картину реально осуществить нельзя, и поэтому всегда возникают нарушения однородности разной природы.  [c.576]

И корпускулярной теорий была, пожалуй, одной из наиболее интересных в истории физики. Голландский ученый X. Гюйгенс развивал волновую теорию света. Возражая ему, Ньютон указывал, что всякое волновое движение должно распространяться в какой-либо среде. Г юйгенс допускал существование этой, пока еще не проявившей себя явным образом среды, которую он назвал эфиром. Отношение Ньютона ко всякого рода эфирным теориям мы уже знаем (с. 54). Частищл света, утверждал он, не нуждаются в чем-либо для своего распространения. Опираясь на акт отсутствия взаимодействия пересекающихся световых пучков, Гюйгенс утверждал, что это трудно совместить с корпускулярной теорией. Ньютон же, обращая внимание на прямолинейность распространения света, видел в этом противоречие с волновой теорией (распространяющиеся по поверхности воды волны огибают расположенные на их пути препятствия).  [c.115]


В начале XIX в. идеи Гюйгенса начали превалировать над идеями Ньютона. Опыты по интерференции света, впервые поставленные Юнгом, было трудно и практически невозможно интерпретировать, исходя из корпускулярной теории. Френель развил тогда свою замечательную теорию упругого распространения световых волн, и с этого момента доверие к концепции Ньютона стало непрерывно уменьшаться. Одним из больших успехов Френеля было объяснение прямолинейного распространения света, интерпретация которого в теории испускания была чисто интуитивной. Когда две теории, основанные на идеях, кажущихся совершенно различными, объясняют с одинаковым изяществом одну и ту же экспериментально докаэан-ную истину, то всегда возникает вопрос, действительно ли противоположны обе точки зрения и не является ли эта противоположность лишь следствием того, что наши усилия синтезировать их оказались недостаточными. Такой вопрос не поднимался в эпоху Френеля представление о корпускулах света было признано наивным и отброшено.  [c.642]

То, что для Гюйгенса и Юнга являлось проблемой, для Гамильтона — исходный пункт. Они ставили себе задачу объяснить опытный факт прямолинейного распространения света, выводя его из каких-то причин, скрытых во внутренней природе световых явлений. Гамильтон видит свою задачу не в обяснении этого факта, а в такой его формулировке, которая максимально удовлетворяла бы стремлению к единству и стройности математической схемы. Это не значит, что нельзя пользоваться вспомогательными конструкциями, вроде волновых фронтов, но не следует приписывать им реальность. Все значение этих вспомогательных конструкций состоит в том, чтобы сделать возможной математическую формулировку наблюдаемых соотношений. В этом Гамильтон убедился еще больше, когда в третьем добавлении к своей Теории систем лучей показал, что построенный им общий метод геометрической оптики может быть выражен как корпускулярным, так и волновым языком, причем, независимо от принятого аспекта.  [c.808]

Представления геометрической оптики опираются на прямолинейность распространения света, т. е. на прямолинейность световых лучей если учесть также строгое подобие изображения и предмета, то становится возможным моделировать процесс образования изображения как зависимость между элементами предметного пространства и пространства изображений, когда прямой линии в предметном пространстве соответствует прямая линия в пространстве изображений и когдаточке в предметном пространстве соответствует точка в пространстве изображений. Эти зависимости называют солинейным сродством или коллинеарными зависимостями, и их можно выразить дробно-линейными функциями.  [c.5]

Излагая в кратком очерке историю оптики, Гамильтон прежде всего подчеркивает прямолинейность распространения света. Этот опытный факт в конце концов выкристаллизовывается в следующее важное положение, которое является фундаментальной теоремой оптики Связь меноду освещением и освещающим телом, или между рассматриваемым объектом и воспринимающим глазом, осуществляется посредством постепенного, но очень быстрого распространения некоторого предмета или влияния или состояния, называемого светом, от светящихся или видимых тел вдоль математических или физических линий, называемых обычно лучами и оказывающихся при самых общих условиях точно или приближенно прямыми  [c.206]

Широко известны различные примеры проявления этих специфических свойств лазерного излучения. Так, например, в различных прозрачных средах возникает его самофокусировка, т. е. нарушается один из основных законов оптики — закон прямолинейного распространения света. Самофокусировка обусловлена большой интенсивностью лазерного излучения, под действием которого изменяется коэффициент преломления среды. Другой хорошо известный пример — возможность разделения изотопов ла-эерным излучением за счет высокой монохроматичности излучения и его селективного воздействия па состояния сверхтонкой структуры атомных спектров. Когерентность лазерного излучения и, в частности, его экстремально малая расходимость позволяют фокусировать излучение в кружок, диаигетр которого порядка длины волны излучения, т. е. порядка 1 мкм. При длительности лазерного импульса порядка фемтосекунд длина цуга, т. е. той области пространства, где локализовано электромагнитное поле вдоль направления его распространения, составляет величину порядка 10 см, т. е. величину порядка длины волны излучения Можно привести и другие примеры, столь же принципиально противоречащие привычным представлениям, сложившимся в до-лазерную эпоху, когда существовали лишь некогерентные источники излучения.  [c.6]

Взаимодействие излучения с прозрачными средами. Если исходить из основного предположения, что среда прозрачна, то, очевидно, надо под термином взаимодействие иметь в виду процесс распрострапения излучения в среде. Основные законы распространения света в прозрачных средах, справедливые в рамках линейной оптики, общеизвестны [1]. Это закон прямолинейного распространения света закон независимости световых пучков законы отражения и преломления на границе различных сред законы поглощения Бугера и Вера. В основе всех этих макроскопических ааконов лежит одна общая микроскопическая закономерность поляризация среды иод действием поля излучения описывается первым, линейным членом р = />< > = разложения индуцированной поляризации по степеням напряженности поля Е.  [c.15]

Основные законы распространения света хорошо известны из курса оптики [1]. Это законы волновой линейной оптики, т. е. законы, определяющие распространение световых волп при малой интенсивности света. Из линейной оптики хорошо известно, что если и среде коэффициент преломления не постоянен, а, например, плавно изменяется, то прямолинейность распространения света нарушается, световые лучж и.чгибаютсн в направлении большего коэффициента преломления. Это так называемое явление оптической рефракции [1] ).  [c.165]


Смотреть страницы где упоминается термин Прямолинейное распространение света : [c.125]    [c.151]    [c.116]    [c.808]    [c.677]    [c.421]    [c.374]    [c.258]    [c.134]    [c.63]    [c.267]    [c.279]    [c.332]   
Смотреть главы в:

Справочное руководство по физике  -> Прямолинейное распространение света



ПОИСК



309 — Прямолинейность

Закон прямолинейного распространения света в однородной среде

Прямолинейное распространение свет

Прямолинейное распространение свет



© 2025 Mash-xxl.info Реклама на сайте