Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектр электронов в твердом теле, зонная структура

Спектр электронов в твердом теле, зонная структура.  [c.8]

Энергия химической адсорбции. Все многообразие химических связей в объемных соединениях сохраняется и на поверхности. Однако специфика ее электронной структуры может существенно повлиять и на характер связи и распределение электронов как в адсорбированной молекуле, так и в поверхностной фазе твердого тела. Как мы уже говорили, адсорбированная частица и твердое тело должны рассматриваться как единая квантовая система. Теория хемосорбционной связи развивается в двух направлениях. Одно из них преследует задачу конкретизировать распределение электронов в образовавшемся адсорбционном комплексе, другое — ограничивается описанием общих свойств системы адсорбированная молекула-твердое тело, сосредоточивая основное внимание на изменениях энергетического спектра поверхности в рамках зонного приближения.  [c.213]


Плотность состояний электронов в кристаллическом твердом теле описывается более сложной функцией, так как на нее влияет периодичность структуры кристалла. В результате кривая плотности состояний распадается на большое число различных участков, как схематически показано на фиг. 78. Такой тип структуры плотности состояний называется зонной структурой спектра  [c.256]

Использование синхротронного излучения для исследования спектров твердых тел позволило расширить спектральную область измерений и систематически исследовать переходы из внутренних состояний остова, являющихся плоскими в пространстве квазиимпульса. Исследование таких переходов позволяет получить дополнительную информацию о структуре зоны проводимости. На схеме показаны также и переходы, связанные с фотоэмиссией электронов.  [c.252]

Коттрелл сообщил о мягких спектрах рентгеновского излучения (эмиссии) для жидкого алюминия [50]. Его данные сходны с результатами, полученными для твердого металла [51], но имеется пик, характерный для частично перекрывающихся зон в твердом теле и менее резко выраженный в жидкости. Мы приходим к выводу, что в электронной структуре металла после плавления значительных изменений не происходит особенности поверхности Ферми в жидкости сглажены. К такому же выводу пришел Скиннер [52] в своей ранней работе по жидкому литию и, конечно, Марч и другие в теоретической работе, упомянутой выше. Позже (см. разделы 5 и 7) будут обсуждаться факты, относящиеся к изменению в электронной структуре после плавления.  [c.24]

Теоретич. исследования иоказывают, что при этом предположении сохраняются основные свойства кристаллич. П. в энергетич, спектре имеются запрещенные зоны, разрешенные уровни образуют непрерывные или квазинепрерывные зоны, движение электрона (в 1-м приближении) описывается волнами, распространяющимися в твердом теле, т. е. электроны, как и в кристалле, квазисвободны, Т. о., структура спектра и др. особенности определяются не дальним, а ближним порядком в расположении атомов. Однако имеют место особенности, связанные с отсутствием дальнего порядка, напр, существует дополнительное, специфическое для аморфного тела рассеяние электронов в аморфных П. отсутствует примесная проводимость (см, также Жидкие полупроводники).  [c.112]

Естественно, что даже абстрагируясь от электронной подсистемы твердого тела, квантово-химические расчеты для модели одноточечной адсорбции на изолированном регулярном атоме поверхности далеки от действительности. Адсорбция на центре М изменяет параметры связей этого атома с окружающими его поверхностными атомами и распределение электронов в соседних связях. Развитие вычислительной техники позволило перейти к следующему этапу расчетов хемосорбционных взаимодействий — к кластерным моделям. Полу-бесконечный кристалл в этих методах аппроксимируется кластером из небольшого числа регулярных атомов. Оптимальный размер кластера зависит не только от возможностей ЭВМ, но и определяется теми параметрами твердого тела, которые предполагается рассчитать. Так, для расчетов теплот адсорбции и эффективных зарядов можно использовать достаточно малые кластеры из десятка атомов, поскольку зависимости этих величин от размеров кластеров быстро приходят к насыщению. Наоборот, для расчета электронной структуры кластера и ее изменения при адсорбции, а также для привязки энергетического спектра кластера к зонной струтоуре твердого тела необходимо использовать большие кластеры. При этом значительные проблемы возникают с выбором краевых условий на фаницах кластера с кристаллом.  [c.216]


Зонная структура твердого тела является результатом взаимодействия волновой функции электрона с рещеткой. Зонная структура позволяет найти частоты и направления, для которых волновая функция электрона может или не может проходить через решетку. Отражение электронной волны под углами Брэгга от кристаллографических плоскостей является идеально упругим и не вносит вклада в электрическое сопротивление. Для каждого кристалла и каждой электронной конфигурации условия Брэгга налагают определенные ограничения на направление волнового вектора и значения энергий, которые может принимать электронная волна. Эти ограничения в направлениях и значениях энергий приводят к появлению щелей в почти непрерывном спектре энергий и направлений. Именно эти щели (порядка 1 эВ для полупроводников и 5 эВ или больше для хороших диэлектриков) обусловливают сильнейшие различия между металлами, полупроводниками и диэлектриками (рис. 5.2). Для металлов характерно, что уровень Ферми оказывается внутри зоны, имеющей вакантные энергетические уровни. Полупроводники имеют полностью заполненную разрешенную зону. Ширина запрещенной зоны у них невелика, н поэтому ие большое число электронов при тепловом возбуждении может перейти в расположенную выше разрешенную зону. Диэлектрик отличается от полупроводника тем, что его запрещенная зона очень велика, и практически ни один возбужденный электрон не может ее преодолеть.  [c.190]

Электрические свойства кристаллического твердого тела определяются его зонной структурой, т. е. спектром разрешенных энергетических состояний его электронов, и степенью заполнения этих зон. В кристаллическом кремнии при нулевой температуре валентные электроны (по четыре от каждого атома) заполняют всю валентную зону , отделенную от пустой зоны проводимости энергетической щелью шириной примерно в 1 эБ. В элементарных полупроводниках германий и кремнии модао проследить происхождение запрещенной зоны из ковалентных связей между атомами валентная зона образуется связанными состояниями с более низкой энергией, а зона проводимости —высоколежащими антисвязанными состояниями 1) Поскольку дальнейшее увеличение кинетической энергии электронов, находящихся в заполненной зоне, невозможно, оказывается, что в основном состоянии кристалла подвижные носители заряда отсутствуют, так что при Т— 0 кристалл является диэлектриком,  [c.127]

Спектроскопия фотолюминесценции твердых тел методически основана на измерении спектра вторичного свечения при фиксированном спектральном составе возбуждающего света и на измерении спектра возбуждения фотолюминесценции, когда приемник регистрирует вторичное излучение в узком спектральном интервале и измеряется зависимость сигнала от частоты возбуждающего света. В первом методе измеряемый спектр определяется главным образом силой осциллятора и временем жизни излучающих состояний, энергетически расположенных вблизи края фундаментального поглощения, и косвенно процессами энергетической релаксации горячих возбужденных состояний. Во втором методе в первую очередь получается информация о спектре и силе осциллятора (но не о времени жизни) электронных возбуждений в энергетической области выше края поглощения. Вклад в фотолюминесценцию полупроводников могут вносить различные механизмы излучательной рекомбинации, такие как зона—зона , зона—примесь , донор—акцептор , с участием фонона, излучение свободных, связанных или локализованных экситонов, а также экситон-поляритонная и биэкситонная рекомбинации. Фотолюминесценция структур с квантовыми ямами имеет свои характерные особенности. В частности, низкотемпературная люминесценция нелегированных квантовых ям обычно связывается с излучательной рекомбинацией экситонов, локализованных на шероховатостях интерфейсов и флуктуациях состава. Дело в том, что в реальности интер-  [c.134]



Смотреть страницы где упоминается термин Спектр электронов в твердом теле, зонная структура : [c.153]    [c.373]    [c.150]   
Смотреть главы в:

Электронные свойства твердых тел  -> Спектр электронов в твердом теле, зонная структура



ПОИСК



Д-структура зонная

Спектр электронов в твердом теле

Спектры электронные

Спектр—Структура

Структура твердых тел

Электронная структура

Электронная структура твердых тел

Электронное твердое тело



© 2025 Mash-xxl.info Реклама на сайте