Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Практический расчет сжатых стержней

Даже при незначительном превышении сжимающей силой ее критического значения в стержне возникают большие прогибы и высокие напряжения — практически стержень выходит из строя. Таким образом, с точки зрения практических расчетов сжатых стержней критическая сила должна рассматриваться как разрушаюш,ая нагрузка.  [c.312]

Практический расчет сжатых стержней на устойчивость  [c.270]

При практических расчетах сжатых стержней на устойчивость необходимо знать величину коэффициента приведения длины ц стержня (для простых случаев опирания значения ц приведены на рис. 13.7).  [c.288]


Практический расчет сжатых стержней  [c.417]

Практическое значение рассматриваемой темы для различных специальностей техникумов далеко не равноценно. В машиностроении с расчетами сжатых стержней на устойчивость приходится встречаться при проектировании металлических конструкций подъемно-транспортных машин, грузовых, нажимных и ходовых винтов, штоков поршневых машин, элементов конструкций летательных аппаратов Для учащихся немашиностроительных специальностей эта тема имеет только развивающее и почти никакого прикладного значения. Наиболее часто с расчетами на устойчивость приходится встречаться (в дальнейшем при изучении специальных предметов и в будущей практической деятельности) учащимся строительных специальностей. При этом последние ведут расчеты по СНиПам, т. е. пользуясь коэффициентами продольного изгиба, а не формулой Эйлера и эмпирическими зависимостями.  [c.188]

Практические приемы расчета сжатых стержней. Из всего сказанного выше следует, что для обеспечения надежной работы сжатого стержня должны быть обеспечены как прочность его по условию  [c.369]

В своей работе Ф. С. Ясинский провел глубокий анализ современного ему состояния теории продольного изгиба и дал решение ряда новых теоретических задач, а также заложил основы теории устойчивости продольно сжатых стержней за пределом пропорциональности. Разработанным им практическим методом расчета сжатых стержней на устойчивость пользуются (с некоторыми уточнениями) и в настоящее время.  [c.218]

Ф. С. Ясинский подверг в своей работе глубокому анализу современное ему состояние теории продольного изгиба, дал решение ряда новых теоретических задач, заложил основы теории устойчивости сжатых стержней за пределом пропорциональности, вывел на основе обработки опытных данных формулу для вычислений критических напряжений за этим пределом, разработал практический метод расчета сжатых стержней ва устойчивость. Ре-  [c.282]

ПРАКТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА СЖАТЫХ СТЕРЖНЕЙ  [c.423]

При подборе размеров сжатых стержней используется так называемый практический метод расчета, гарантирующий их устойчивость в процессе эксплуатации. Условие устойчивости для таких стержней имеет следующий вид  [c.91]

Для сжатых стержней учитывать эти несовершенства не обязательно, поскольку в пределах практически встречающихся отступлений от расчетной схемы сила выпучивания сравнительно мало отличается от критической силы. По величине последней без особых погрешностей и может быть произведен расчет.  [c.141]


Практический расчет. В практических расчетах часто пользуются так называемым коэффициентом уменьшения основных допускаемых напряжений при сжатии стержней ).  [c.369]

При практических расчетах растянутых и сжатых стержней следует помнить, что формулы (2.1) и (2.2) для любого способа приложения растягивающей или сжимающей нагрузки (кроме равномерно распределенной по концевым сечениям) могут быть оправданы только при условии применения принципа Сен-Венана. Поэтому ими допустимо пользоваться лишь для стержней, длина которых превышает наибольший размер поперечного сечения по крайней мере в три раза. У концов стержня необходимо считаться с местными напряжениями, величина которых зависит от способа приложения нагрузки.  [c.27]

Из сказанного следует, что даже при больших местных ослаблениях сечений сжатого стержня влияние их на величину критической сжимающей силы невелико. Поэтому при практических расчетах вполне допустимо определять критическую силу без учета местных ослаблений сечения, т. е. вести эти расчеты по неослабленному сечению (по сечению брутто).  [c.354]

Деформации многих конструкций при действии некоторого вида нагрузок незначительны, пока величины этих нагрузок меньше так называемых критических значений. При нагрузках же, превышающих (даже весьма незначительно) критические значения, деформации конструкций резко возрастают. Простейший пример такого явления представляет так называемый продольный изгиб сжатого стержня — при некотором значении сжимающей силы происходит выпучивание прямолинейного стержня, практически равносильное разрушению. Такое качественное изменение характера деформации конструкции при увеличении нагрузки называется потерей устойчивости. Расчет конструкции, имеющий целью не допустить потери устойчивости, называется расчетом на устойчивость.  [c.5]

Для упрощения в предлагаемой ниже методике ЦНИИСК практические расчеты всех раскосов независимо от характера их закрепления рекомендуется производить, пользуясь одной формулой. Неодинаковые условия работы раскосов в системах различных решеток учитываются коэффициентом условий работы т, а различные условия закрепления концов — приведенной гибкостью стержня раскосов Яр. Формулы для расчета стержней решетки при растяжении и сжатии  [c.183]

Итак, при сжимающей силе, меньшей критической, стержень работает на сжатие при силе, большей критической, стержень работает на совместное действие 7/////////УУ сжатия и изгиба. Даже при небольшом превышении сжимающей нагрузкой значения Р р прогибы стержня нарастают чрезвычайно быстро, и он или разрушается в буквальном смысле слова, или получает недопустимо большие деформации, выводящие конструкцию из строя. Поэтому, с точки зрения практических расчетов, критическая сила должна рассматриваться как разрушающая нагрузка.  [c.273]

Составление формулы для практического расчета на продольный изгиб. Необходимо уяснить, что критические напряжения при раст четах на устойчивость играют такую же роль, как временное сопротивление в расчетах на прочность. Нельзя допустить, чтобы в сжатых стойках возникли нормальные напряжения, равные критическим. Поэтому необходимо от критических напряжений, определяемых при большой гибкости по формуле Эйлера, а при малой по формуле Тетмайера — Ясинского, перейти к допускаемым напряжениям при продольном изгибе. Для этого нужно критические напряжения разделить на коэффициент запаса к. Последний принимают равным для металлов А==2—3 для дерева к=Ъ—4. Этим коэффициентом запаса учитывается, кроме чистого продольного изгиба, еще целый ряд побочных факторов небольшой возможный эксцентриситет приложения нагрузки, небольшое начальное искривление стержня, неоднородность материала и др.  [c.488]

При практическом применении изложенного выше точного метода вычисления критического значения нагрузки на пластину в ряде случаев возникают значительные трудности в нахождении решения дифференциального уравнения срединной поверхности, удовлетворяющей заданным краевым условиям. Кроме того, трансцендентность уравнений, к которым приводит точный метод, не позволяет выразить критическую нагрузку в явной форме. Поэтому, так же как и при рассмотрении устойчивости сжатых стержней, наряду с точным методом целесообразно использование приближенного метода расчета, основанного на рассмотрении потенциальной энергии выпучившейся пластины.  [c.979]


Практический метод расчета. Строительные нормы и правила (СНиП) предусматривают для сжатых стержней проверку  [c.118]

Для иллюстрации практического применения теории растяжения и сжатия разберем расчет простейших ферм с небольшим чис лом стержней.  [c.57]

В реальных условиях практические расчеты по касательному и по приведенному модулям мало чем отличаются один от другого. При подходе к пределу текучести, и за ним, касательный модуль Е неизмеримо меньше номинального модуля упругости Е. А раз так, то приведенный модуль Энгессера — Кармана по порядку величины близок к касательному, а критическая сила падает до столь низкого значения, что конструкция фактически не может воспринимать осевой сжимающей нагрузки. Поэтому стержни, сжатые до предела текучести, в качестве несущих элементов практически и не используются.  [c.156]

Вопрос об устойчивости приходится решать в случае сжатия стержня, размеры поперечного сечения которого малы по сравнению с длиной. Прп увеличении сжимающих сил прямолинейная форма равновесия стержня может оказаться неустойчивой, и стери ень выпучится, ось его искривится. Явление это носит название продольного изгиба. Наибольшее значение центрально приложенной сжимаюш,ей силы, до достижения которого прямолинейная форма равновесия стержня является устойчивой, называют критической силой. При сжимающей силе меньше критической стержень работает на сжатие при силе, превышающей критическую, стержень работает на совместное действие сжатия и изгиба. Даже при небольшом превышении сжимаюш,ей нагрузкой критического значения прогибы стержня нарастают чрезвычайно быстро, и стержень или разрушается в буквальном смысле слова, или получает недопустимо большие деформации, вь водящие конструкцию из строя. Поэтому сточки зрения практических расчетов критическая сила должна рассматриваться как разрушающая нагрузка.  [c.124]

Выше отмечалось, что в случае неравномерного распределения по торцам нормальных сил сечения перестают быть плоскими (деплакируют). Однако на большей части длины стержня, за исклю чением частей, примыкающих к торцам, сечения практически остаются плоскими. Если к промежуточному поперечному сечению стержня приложена неравномерно распределенная нагрузка, сводящаяся к силе, действующей вдоль его оси, то заметные отклонения от плоской формы сечений наблюдаются и вблизи этого промежуточного сечения. Возмущения имеются в районах изменения сечений, в том числе — ослаблений. Однако при,сравнительно небольшом удалении от всех этих мест возмущений поперечные сечения стержня при деформации практически остаются плоскими. Поэтому можно принять упрощающую расчет гипотезу о том, что при растяжении или сжатии стержней поперечные сечения, плоские до деформации, остаются плоскими и параллельными друг другу и после деформации. Эта гипотеза носит название гипотезы плоских сечений (гипотеза Мариотта — Бернулли) ). Применительно к телам, имеющим форму брусьев, в сопротивлении материалов она заменяет собой условия совместности деформаций, используемые при решении задачи о распределении напряжений в более точной науке — в теории упругости. Такая замена, естественно, приводит к искажению истинной картины распределения напряжений, ощутимому лишь в указанных выше областях.  [c.97]

Практическая важность угих глав обусловлена необходимостью обеспечения той раиновеснои формы упругой системы (сжатых стержней или иластии, балок на жестких или упругих опорах, цилиндрических оболочек и др.), которая принята конструктором в качестве исходной при расчете соответствующей деформации (сжатия, кручения или изгиба). Превышение так называемых критических, пли эйлеровых, нагрузок, вызванное нарушением расчетной схемы, может привести к аварийным ситуациям и к разрушению корпуса. В связи с этим большое значение приобретает правильное определение критических (эйлеровых) напряжений, позволяющих с учетом необходимого запаса прочности, который, в свою очередь, завпсит от достоверности знания внешней нагрузки, точности расчег-ных формул, уверенности в механических качествах материала и тщательности выполнения конструкции, назначить допускаемые напряжения.  [c.47]

Эйлер, которому принадлежат первые решения в области устойчивости сжатых стержней, не ограничился случаем призматического стержня и рассмотрел несколько задач, где поперечное сечение стержня изменялось вдоль оси. Так, например, им решена задача об устойчивости конического стерткня и стержня, боковая поверхность которого представляет собой параболоид враш еиия Некоторые задачи этого рода представляют практический интерес и мы пряводии здесь нужные для расчетов численные результаты.  [c.274]

Сжатие стержней, сечения которых имеют местные ослабления (вырезы, отверстия, заклепки и т. п.) (рис. 14.13). Если стержень имеет местные ослабления сечения, то изменение параметра а в уравнении (14.5) мало сказывается на деформации стержня. Как показали исследования С. П. Тимошенко, величина Якр с учето.м местных ослаблений очень. мало отличается от величины критической силы, определяемой по формуле Эйлера без учета ослаблений. Даже при больших местных ослаблениях сечений (до 20%) влияние их на величину критической силы невелико. Поэтому практические расчеты на устойчивость сжатых стержней производятся без учета местных ослаблений, т. е. по сечению брутто.  [c.412]

Влияние инерции вращения и сдвига на динамическую устойчивость стержня, сжатого периодической во времени силой, исследо-валось А. П. Черкасовой [1.86] (1961). В уравнении движения четвертая производная от прогиба по времени не учитывалась. Показано, что учет этих эффектов ухудшает динамическую устойчивость стержня. Для составных стержней их влияние существенно, для сплошных — очень мало и может в практических расчетах не учитываться.  [c.77]


Между областями, соответствующими коротким и длинным стержням, располагается область промежуточных значений гибкости, слищком малых для того, чтобы относиться к упругому случаю потери устойчивости, и слишком больших для того, чтобы расчет их велся только на прочность при сжатии. Такие стержни средней длины выпучиваются неупруго. Для практических целей иногда бывает достаточно провести прямую ЕВ (рис. 10.8) и считать, что она дает критические напряжения для стержней средней длины. Таким образом получается ломаная кривая DE ВС, которую можно использовать как основу для расчета стержней произвольной длины, С другой стороны, можно использовать некоторую гладкую кривую, соС диняющую точки D и Б (см. разд. 10.6).  [c.401]


Смотреть страницы где упоминается термин Практический расчет сжатых стержней : [c.370]    [c.287]    [c.209]    [c.143]    [c.54]    [c.191]   
Смотреть главы в:

Сопротивление материалов Изд3  -> Практический расчет сжатых стержней



ПОИСК



Практические методы расчета сжатых стержней

Практические приемы расчета сжатых стержней

Практический расчет сжатых стержней на устойчивость

Стержень сжатый

Стержень — Расчет



© 2025 Mash-xxl.info Реклама на сайте