Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Практический расчет сжатых стержней на устойчивость

Практический расчет сжатых стержней на устойчивость  [c.270]

При практических расчетах сжатых стержней на устойчивость необходимо знать величину коэффициента приведения длины ц стержня (для простых случаев опирания значения ц приведены на рис. 13.7).  [c.288]

Практическое значение рассматриваемой темы для различных специальностей техникумов далеко не равноценно. В машиностроении с расчетами сжатых стержней на устойчивость приходится встречаться при проектировании металлических конструкций подъемно-транспортных машин, грузовых, нажимных и ходовых винтов, штоков поршневых машин, элементов конструкций летательных аппаратов Для учащихся немашиностроительных специальностей эта тема имеет только развивающее и почти никакого прикладного значения. Наиболее часто с расчетами на устойчивость приходится встречаться (в дальнейшем при изучении специальных предметов и в будущей практической деятельности) учащимся строительных специальностей. При этом последние ведут расчеты по СНиПам, т. е. пользуясь коэффициентами продольного изгиба, а не формулой Эйлера и эмпирическими зависимостями.  [c.188]


В своей работе Ф. С. Ясинский провел глубокий анализ современного ему состояния теории продольного изгиба и дал решение ряда новых теоретических задач, а также заложил основы теории устойчивости продольно сжатых стержней за пределом пропорциональности. Разработанным им практическим методом расчета сжатых стержней на устойчивость пользуются (с некоторыми уточнениями) и в настоящее время.  [c.218]

Ф. С. Ясинский подверг в своей работе глубокому анализу современное ему состояние теории продольного изгиба, дал решение ряда новых теоретических задач, заложил основы теории устойчивости сжатых стержней за пределом пропорциональности, вывел на основе обработки опытных данных формулу для вычислений критических напряжений за этим пределом, разработал практический метод расчета сжатых стержней ва устойчивость. Ре-  [c.282]

Деформации многих конструкций при действии некоторого вида нагрузок незначительны, пока величины этих нагрузок меньше так называемых критических значений. При нагрузках же, превышающих (даже весьма незначительно) критические значения, деформации конструкций резко возрастают. Простейший пример такого явления представляет так называемый продольный изгиб сжатого стержня — при некотором значении сжимающей силы происходит выпучивание прямолинейного стержня, практически равносильное разрушению. Такое качественное изменение характера деформации конструкции при увеличении нагрузки называется потерей устойчивости. Расчет конструкции, имеющий целью не допустить потери устойчивости, называется расчетом на устойчивость.  [c.5]

Составление формулы для практического расчета на продольный изгиб. Необходимо уяснить, что критические напряжения при раст четах на устойчивость играют такую же роль, как временное сопротивление в расчетах на прочность. Нельзя допустить, чтобы в сжатых стойках возникли нормальные напряжения, равные критическим. Поэтому необходимо от критических напряжений, определяемых при большой гибкости по формуле Эйлера, а при малой по формуле Тетмайера — Ясинского, перейти к допускаемым напряжениям при продольном изгибе. Для этого нужно критические напряжения разделить на коэффициент запаса к. Последний принимают равным для металлов А==2—3 для дерева к=Ъ—4. Этим коэффициентом запаса учитывается, кроме чистого продольного изгиба, еще целый ряд побочных факторов небольшой возможный эксцентриситет приложения нагрузки, небольшое начальное искривление стержня, неоднородность материала и др.  [c.488]


При практическом применении изложенного выше точного метода вычисления критического значения нагрузки на пластину в ряде случаев возникают значительные трудности в нахождении решения дифференциального уравнения срединной поверхности, удовлетворяющей заданным краевым условиям. Кроме того, трансцендентность уравнений, к которым приводит точный метод, не позволяет выразить критическую нагрузку в явной форме. Поэтому, так же как и при рассмотрении устойчивости сжатых стержней, наряду с точным методом целесообразно использование приближенного метода расчета, основанного на рассмотрении потенциальной энергии выпучившейся пластины.  [c.979]

Вопрос об устойчивости приходится решать в случае сжатия стержня, размеры поперечного сечения которого малы по сравнению с длиной. Прп увеличении сжимающих сил прямолинейная форма равновесия стержня может оказаться неустойчивой, и стери ень выпучится, ось его искривится. Явление это носит название продольного изгиба. Наибольшее значение центрально приложенной сжимаюш,ей силы, до достижения которого прямолинейная форма равновесия стержня является устойчивой, называют критической силой. При сжимающей силе меньше критической стержень работает на сжатие при силе, превышающей критическую, стержень работает на совместное действие сжатия и изгиба. Даже при небольшом превышении сжимаюш,ей нагрузкой критического значения прогибы стержня нарастают чрезвычайно быстро, и стержень или разрушается в буквальном смысле слова, или получает недопустимо большие деформации, вь водящие конструкцию из строя. Поэтому сточки зрения практических расчетов критическая сила должна рассматриваться как разрушающая нагрузка.  [c.124]

Сжатие стержней, сечения которых имеют местные ослабления (вырезы, отверстия, заклепки и т. п.) (рис. 14.13). Если стержень имеет местные ослабления сечения, то изменение параметра а в уравнении (14.5) мало сказывается на деформации стержня. Как показали исследования С. П. Тимошенко, величина Якр с учето.м местных ослаблений очень. мало отличается от величины критической силы, определяемой по формуле Эйлера без учета ослаблений. Даже при больших местных ослаблениях сечений (до 20%) влияние их на величину критической силы невелико. Поэтому практические расчеты на устойчивость сжатых стержней производятся без учета местных ослаблений, т. е. по сечению брутто.  [c.412]

Влияние инерции вращения и сдвига на динамическую устойчивость стержня, сжатого периодической во времени силой, исследо-валось А. П. Черкасовой [1.86] (1961). В уравнении движения четвертая производная от прогиба по времени не учитывалась. Показано, что учет этих эффектов ухудшает динамическую устойчивость стержня. Для составных стержней их влияние существенно, для сплошных — очень мало и может в практических расчетах не учитываться.  [c.77]

Между областями, соответствующими коротким и длинным стержням, располагается область промежуточных значений гибкости, слищком малых для того, чтобы относиться к упругому случаю потери устойчивости, и слишком больших для того, чтобы расчет их велся только на прочность при сжатии. Такие стержни средней длины выпучиваются неупруго. Для практических целей иногда бывает достаточно провести прямую ЕВ (рис. 10.8) и считать, что она дает критические напряжения для стержней средней длины. Таким образом получается ломаная кривая DE ВС, которую можно использовать как основу для расчета стержней произвольной длины, С другой стороны, можно использовать некоторую гладкую кривую, соС диняющую точки D и Б (см. разд. 10.6).  [c.401]


Смотреть страницы где упоминается термин Практический расчет сжатых стержней на устойчивость : [c.370]    [c.143]    [c.287]   
Смотреть главы в:

Сопротивление материалов с основами теории упругости и пластичности  -> Практический расчет сжатых стержней на устойчивость



ПОИСК



Практические расчеты стержней на устойчивость

Практический расчет сжатых стержней

Расчет на устойчивость

Расчет сжатых стержней на устойчивость

Стержень сжатый

Стержень — Расчет

Устойчивость сжатых стержней

Устойчивость сжатых — Расчет

Устойчивость стержней

Устойчивость стержней при сжатии



© 2025 Mash-xxl.info Реклама на сайте