Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фундаментальные уравнения механики упругих сред

Фундаментальные уравнения механики упругих сред  [c.131]

Уравнения осредненного движения. Движение в атмосфере подчиняется фундаментальным уравнениям механики сплошных сред, которые включают уравнение неразрывности (в соответствии с принципом сохранения массы) и уравнения изменения количества движения, т. е. второй закон Ньютона. Эти уравнения могут быть дополнены феноменологическими соотношениями, т.е. эмпирическими зависимостями, которые описывают удельную реакцию рассматриваемой непрерывной упругой среды на внешние воздействия (например, для случая линейно-упругого тела эти дополнительные соотношения представляют так называемый закон Гука).  [c.33]


Простейшие в МСС тела — идеальные и классические (ньютоновские) жидкости, идеально упругие твердые тела. Эти тела (идеализированные модели реальных тел) обладают фундаментальными свойствами реальных жидких и твердых тел, причем свойства, во многих случаях второстепенные, не учитываются. Опыт показывает, что поведение многих реальных жидкостей, газов и твердых тел в определенных условиях достаточно точно описывается уравнениями механики сплошной среды, построенными для указанных идеальных тел. Методическое значение моделей состоит еще и в том, что из сопоставления с опытом получается возможность изучения отклонений свойств реальных тел от свойств моделей и, значит, возможность уточнения теории.  [c.181]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]

Триводится вывод фундаментальных уравнений движения, реологии и термодинамики многофазных сред. Рассмотрены особенности сейсмических и ударных волн в насыщенных жидкостью породах, механизм уплотнения (консолидации) земляных масс, механика квазистационарных процессов в нефтегазовом пласте. Проанализированы свойства горных пород и флюидов под давлением, даны уравнения упругого режима фильтрации нефти и газа и расчеты важнейших типов фильтрационных потоков. Уделено внимание учету эффектов трещиноватости, прогиба кровли пластов (нелокально-упругих эффектов), изменений нроницаемости пласта, двучленного закона фильтрации и т. д. Предложены рекомендации по расшифровке наблюдений за установившимися и нестационарными режимами работы нефтяных п газовых скважин.  [c.2]


В теоретическом аспекте эти вопросы непосредственно связаны с важной проблемой контактного взаимодействия тел в широком смысле, одно из которых в данном случае является тонкостенным телом. Учет тонкостенпости в рамках различных допущений и теорий приводит, вообще говоря, к новым постановкам задачи контакта деформируемых тел, существенно отличным от постановок классических контактных задач теории упругости. В результате возникает класс новых задач механики сплошных сред со смешанными краевыми условиями. Несмотря на своеобразие указанных задач, они по своей физической природе и структуре описывающих их уравнений родственны обычным контактным и смешанным задачам. Поэтому для их изучения могут быть использованы многие фундаментальные результаты и методы, изложенные в обзорной монографии [1], подытожившей развитие в СССР (до 1975 г.) проблемы контактного взаимодействия тел.  [c.9]

Лагранж (Lagrange) Жозеф Лг/ (1736-1813) — выдающийся французский математик и механик, В1754 г. стал профессором артиллерийской школы. Основатель знаменитой Туринской академии. В 1766-1787 гг. преподавал в Берлинской академии наук. В 1787 г. переехал в Париж, где до конца жизни был профессором Нормальной школы и Политехнической школы. В 1788 г, издал знаменитую книгу Аналитическая механика , которую У. Р. Гамильтон назвал научной поэмой . Развил основные понятия вариационного исчисления и предложил общий аналитический метод для решения вариационных задач. Придал уравнениям движения форму, названную его именем, В Аналитической механике значительное место занимают вопросы механики сплошной среды (гидростатика, гидродинамика, теория упругости). Автор ряда фундаментальных работ по математическому анализу, теории чисел, алгебре, астрономии, картографии и др.  [c.38]


Смотреть страницы где упоминается термин Фундаментальные уравнения механики упругих сред : [c.628]    [c.559]   
Смотреть главы в:

Теория упругости Изд.2  -> Фундаментальные уравнения механики упругих сред



ПОИСК



Механика упругих тел

Среда упругая

Упругость среды

Уравнение фундаментальное

Уравнения Уравнения упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте