Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные гипотезы теории изгиба пластин

Основные гипотезы теории изгиба пластин  [c.158]

В случае больших толщин пластины и высоких частот классическая теория не применима. Поэтому в настоящее время получено много прикладных теорий изгиба пластины, для которых классическая теория является частным случаем. Уточненные теории строятся в основном исходя из гипотез с поведении пластин при деформировании или из уравнений движения трехмерной теории упругости. Довольно полный обзор прикладных теорий изгиба пластин проведен в работе [30]. В настоящей работе наго  [c.20]


Основные положения. Исходные гипотезы геометрического характера в теории изгиба пластин в условиях ползучести — те же, что и в теории упруго-пластического изгиба (см. стр. 615). Если в основе расчета лежат уравнения теории старения (см. гл. 4), то расчеты ползучести пластин в принципе не отличаются от расчета упруго-пластического изгиба пластин при упрочнении необходимо лишь, используя изохронные кривые ползучести (см. гл. 4), произвести ряд расчетов для различных моментов времени.  [c.623]

Основное кинематическое ограничение, принимаемое в технической теории пластин, называется обычно гипотезой прямых нормалей. Оно вполне аналогично гипотезе плоских сечений теории изгиба (и также мало имеет оснований называться гипотезой ). Предполагается, что прямолинейные элементы, нормальные к срединной плоскости пластины до деформации, остаются после деформации прямыми, нормальными к деформированной срединной поверхности и длины этих элементов не меняются.  [c.395]

Приведем некоторые основные положения классической теории изгиба тонких однородных изотропных пластин постоянной толщины, основанной на гипотезах Кирхгофа — Лява. Более подробные сведения по этому вопросу можно найти в монографиях [14, 179, 185, 229].  [c.247]

ИЛИ целых конструкций (фермы, крыла самолета, корпуса ракеты ИТ. п.), так и отдельных элементов (стержней, пластин, оболочек). Некоторые испытания проводятся также для проверки основных расчетных гипотез (например, гипотезы плоских сечений в теории изгиба брусьев). Здесь будет идти речь об образцах для определения механических характеристик материала.  [c.315]

Под прикладной теорией упругости понимают обычно раздел теории упругости, в котором кроме предположения об идеальной упругости материала вводятся дополнительные упрощающие гипотезы, такие как гипотезы плоских сечений или об отсутствии взаимодействия между продольными волокнами стержня в сопротивлении материалов. Так, например, для пластин и оболочек вводится упрощающая гипотеза о прямолинейном элементе, ортогональном к срединной поверхности как до, так и после деформации и др. В основном в прикладной теории упругости изучаются расчеты на изгиб и устойчивость тонкостенных элементов конструкций тонкостенные стержни, пластины, оболочки.  [c.185]

Величины Ki и К2 естественно называть коэффициентами интенсивности моментов при симметричном (Кг) и антисимметричном (/С2) относительно линии трещины распределении напряжений. Асимптотическое разложение смещений и напряжений в окрестности вершины трещины впервые получено на основе классической теории изгиба пластин в работе [438]. Отметим, что высокий, порядок особенности поперечных сил является следствием приближенности применяемой здесь теории изгиба пластин. При решении задачи изгиба пластины с трещиной по различным уточненным теориям, свободным от основной гипотезы классической теории о недеформи-руемости нормалей к срединной поверхности пластины, показано, что поперечные силы при приближении к вершине трещины  [c.254]


Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]


Смотреть страницы где упоминается термин Основные гипотезы теории изгиба пластин : [c.623]   
Смотреть главы в:

Основы строительной механики машин  -> Основные гипотезы теории изгиба пластин



ПОИСК



Гипотеза

Гипотезы в теории изгиба

Изгиб гипотезы

Основные гипотезы

Пластины изгиб

Теория Гипотезы

Теория изгиба

Теория изгиба пластин

Теория пластин



© 2025 Mash-xxl.info Реклама на сайте