Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Германий Примеси

В случае германия примесями первого вида служат элементы пятой группы, например, мышьяка с 5 электронами на внешней оболочке. При замещении германия мышьяком его четыре электрона образуют валентные связи с четырьмя соседними атомами германия. Пятый электрон внешней оболочки мышьяка не может образовать связи с ближайшими атомами и поэтому он легко освобождается. Для этого требуется ничтожно малая энергия — 0,013 эв. Появление свободного электрона в этом случае не сопровождается возникновением дырки, так как ни одна из связей не нарушается. Атом мышьяка приобретает положительный заряд, но он не может, перемещаться.  [c.173]


Введение примесей в полупроводники может приводить к резкому увеличению проводимости. Так, при введении в германий примеси в количестве 0,1% проводимость последнего увеличивается в 10 раз.  [c.31]

Если расплав германия содержит два рода примесей с разными коэффициентами сегрегации, дающими разный тип проводимости, то при изменении скорости выращивания можно получить кристалл с избытком той или другой примеси. Этим свойством пользуются при получении большого количества р—п-переходов, выращенных в процессе вытягивания одного монокристалла затем монокристалл может быть разрезан на нужное число элементов. Например, вводя в расплав германия примеси сурьмы и галлия (сурьмы в несколько большем количестве, так как она имеет меньший коэффициент сегрегации), и при большой скорости вытягивания получают области кристалла с проводимостью п-типа, при более медленной — р-типа между этими областями создаются р—п-переходы. Эту процедуру можно повторять много раз, т. е. в одном монокристалле можно получить несколько последовательных п и р-областей, разделенных плоскими и параллельными р— -переходами.  [c.175]

Исследования показали, что нри температуре жидкого водорода, предназначенного для мащин, применяемых в криогенной технике, кремний ис Может использоваться и, наоборот, германий сохраняет большую часть свойств (в германии примеси остаются ионизированными при этих температурах, чего нет в, кремнии, который ведет себя как диэлектрик).  [c.295]

Температурная зависимость удельного сопротивления полупроводника, в который добавлено небольшое количество примеси, показана на рис. 5.7 [12]. На практике в полупроводнике всегда присутствуют как донорные, так и акцепторные примеси, и разработчик полупроводниковых термометров сопротивления может лишь выбирать соотношение между теми и другими. Для описания процессов проводимости рассмотрим германий, содержащий донорные атомы мышьяка в концентрации N(1 и какие-либо акцепторные атомы в концентрации Л а-На рис. 5.7 можно выделить четыре температурных диапазона, в каждом из которых преобладает какой-либо один механизм проводимости". В высокотемпературном диапазоне [I] проводимость обусловлена главным образом электронами, термически возбужденными из валентной зоны в зону проводимости согласно уравнению (5.8), поскольку все примесные атомы давно уже ионизованы. Это область собственной проводимости для германия она начинается чуть выше 400 К. Этот диапазон не представляет особого интереса для германиевых термометров сопротивления.  [c.198]

Транзистор выращенный — транзистор, изготовленный путем выращивания монокристалла германия или кремния из расплава полупроводника благодаря периодическому внесению в расплав различных легирующих примесей или периодическому изменению скорости вытягивания кристалла в выращиваемом монокристалле создаются чередующиеся зоны с электронной и дырочной проводимостью при выпиливании соответствующего куска монокристалла получают транзисторную структуру [9].  [c.157]


Для изготовления транзистора из монокристалла германия с электронной проводимостью в него с двух противоположных сторон вводится примесь атомов индия. Две области монокристалла германия с примесью индия становятся полупроводниками с дырочной проводимостью, а на границах соприкосновения их с основным кристаллом возникают  [c.159]

Учитывая, что в германии е=16, а т =0,25т, получаем для энергии ионизации примесных атомов V группы d 0,01 эВ. В кремнии, где e =12, а т 0,4т, энергия ионизации должна быть примерно 0,04 эВ. Таким образом, достаточно весьма незначительной энергии, чтобы перевести пятый электрон из связанного состояния в свободное , т. е. в зону проводимости. Примеси, которые поставляют свободные электроны, называют донорными. В табл. 7.2 приведены измеренные значения энергии ионизации доноров в кремнии и германии. Они достаточно хорошо согласуются с расчетными значениями Ed.  [c.238]

Опыт показывает, что с увеличением концентрации доноров (или акцепторов) наклон прямых 1па от 1/Т в области примесной проводимости уменьшается. Согласно (7.168) это значит, что уменьшается энергия ионизации примеси. При некоторой критической концентрации она обраш,ается в нуль. Для элементов пятой группы в германии эта критическая концентрация составляет ЗХ Х10 см , в кремнии 8-10 см . Полупроводник, в котором энергия ионизации примеси обратилась в нуль, называют часто полуметаллом. В нем концентрация электронов и электропроводность нечувствительны к температуре (кроме области температур, где начинается собственная проводимость).  [c.254]

Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]

В настоящее время для легирования аморфного кремния (и германия) кроме фосфора и бора используют также примеси мышьяка. сурьмы, индия, алюминия и т. д. При этом прямым методом было установлено, что координационное число атома мышьяка в аморфном кремнии, так же как и в кристаллическом, равно четырем. Кроме того, для получения слоев -типа в аморфный кремний с низкой плотностью состояний вводят атомы щелочных элементов, которые проявляют донорные свойства, находясь в междоузлиях.  [c.366]

У германия электронная компонента в низкотемпературной теплоемкости не была обнаружена даже в том случае, когда использовались более загрязненные образцы, чем описанные выше образцы кремния. Это и не удивительно, так как эффективные массы носителей тока в кремнии и германии имеют примерно одинаковую величину. Следовательно, электронная теплоемкость, которая пропорциональна отношению эффективных масс носителей и кубическому корню из концентрации примесей [см. (9.7)], будет у этих веществ примерно одинаковой. Наоборот, решеточная теплоемкость  [c.348]

Рассмотрим полупроводник, содержащий Nd донорных атомов (уровней) в единице объема. Предположим, что донорные уровни расположены в непосредственной близости от дна зоны проводимости, так что энергия ионизации примесей AEd очень мала по сравнению с шириной запрещенной зоны ДЕ (такой случай типичен, например, для германия AEd 0,01 эВ при ДЕ 0,75 эВ). Если уровень Ферми проходит ниже дна зоны проводимости, т. е. Ej < —коТ, то вследствие малости AEd практически все атомы примеси будут ионизированными и их электроны перейдут в зону проводимости. Выясним сначала, какова предельная концентраций примесей, при которой исходные предположения перестают быть справедливыми.  [c.116]


Подробное рассмотрение физических процессов в полупроводниках завело бы нас слишком далеко в зонную теорию твердого тела. Поэтому ограничимся перечислением нужных нам свойств полупроводников без обсуждения механизма явлений. Хорошо (до 10" % и выше) очищенный от примесей полупроводниковый кристалл при комнатных температурах имеет ничтожно малую (по сравнению с металлами) электропроводность. Все электроны находятся в связанных состояниях. Для выбивания электрона ему надо сообщить энергию выше некоторой пороговой. Пороговая энергия имеет порядок 1 эВ (0,7 эВ для германия Ge и 1,1 эВ для кремния Si). В среднем на образование пары ионов в полупроводнике тратится энергия примерно 3 эВ — на порядок меньше, чем  [c.503]

Галлий (Са) интересен тем, что он плавится почти при комнатной температуре. Как и индий, его применяют в полупроводниковой технике в качестве легирующей примеси для германия.  [c.35]

Германий, используемый для изготовления полупроводниковых элементов, не должен содержать случайных примесей больше 51(Т %. Наиболее распространенным способом очистки германия является метод зонной плавки. Электронный и дырочный тип электропроводности в германии создают путем легирования его соответствующей примесью. Концентрация легирующей примеси обычно составляет один атом на - 10 атомов полупроводника. Поэтому примесь в германий вводят в виде лигатуры, которая является сплавом германия с примесью. В лигатуре примесь содержится уже в значительных количествах (составляет проценты).  [c.78]

Основные физические свойства германия приведены в табл. 3.1. Температурные зависимости удельного сопротивления германия при различном содержании примесей представлены на рис. 3.23. Германий, применяемый в полупроводниковых приборах, обладает р от миллионных долей омметра до значений, близких к р собственного германия, т. е. (при комнатной температуре) до р = 0,47 Ом-м.  [c.78]

Рис. 3.23. Температурные зависимости удельного сопротивления германия при различном содержании донорной примеси Рис. 3.23. <a href="/info/191882">Температурные зависимости</a> <a href="/info/43842">удельного сопротивления</a> германия при различном содержании донорной примеси
Пример маркировки германия ГДГ 0,75/0,5. Первая буква означает название материала (Г - германий) вторая - тип электропроводности (Э - электронный, или Д - дырочный) третья - название легирующей примеси (в данном случае галлия). Числитель дроби указывает значение удельного сопротивления в Ом см (0.75 Ом см знаменатель - диффузионную длину неосновных носителей заряда в миллиметрах 0,5 мм). Некоторые промышленные марки германия приведены в табл. 3.2.  [c.79]

Введение в полупроводник примесных атомов приводит к нарушению в нем стехиометрического состава и периодичности кристаллической решетки. Примеси вносят в структуру полупроводника дополнительные квантовые уровни, отличающиеся от зонной структуры уровней основного кристалла. В полупроводниках примеси в зависимости от их природы и природы полупроводников могут образовывать п- или р-проводимости. Примеси, образующие и-проводимость, должны иметь большую валентность, чем валентность, основного полупроводника примеси, создающие р-проводимость, должны иметь валентность меньшую по сравнению с валентностью основного полупроводника. Например, для четырехвалентного германия пятивалентные примеси As, Р, Sb и др. создают электронную проводимость, поскольку четыре атома примеси, занимая в кристаллической решетке германия определенные узлы, образуют ковалентные связи с соседними атомами германия, а избыточный (пятый) электрон внешней орбиты мышьяка остается свободным. Такие свободные электроны создают электронную проводимость. Примеси, освобождающие электроны, называются донорами, а соответствующие им энергетические уровни — донорными  [c.282]

Содержание примесей в полупроводниках не должно превышать 10" —10 %. Особенно нежелательны примеси А1, В, W, V, Fe, Со, Мп и др. В германии контро-  [c.284]

Если германий содержит примеси п и р-типа, то баланс между ними может изменяться после термической обработки. Схема изменения электросопротивления германия, содержащего п- и р-примеси в зависимости от температуры показана на рис. 182. До i p концентрация п-примесей уменьшается, но увеличивается концентрация р-при-месей и электросопротивление увеличивается. При t — = /,jp эти концентрации уравновешиваются. При t > i> возникает избыток р-примесей, приводящий к уменьшению сопротивления. Закалкой с > кр = 700 С) этот тип проводимости (р-тип) фиксируется при тем-  [c.289]

Рис. 182. Схема влияния температуры на электросопротивление германия, содержащего п и р-примеси Рис. 182. Схема <a href="/info/222925">влияния температуры</a> на электросопротивление германия, содержащего п и р-примеси
Отличительные особенности современной технологии получения полупроводниковых монокристаллов германия и кремния сводятся к двум операциям очистке методом зонной плавки в вакууме и выращиванию монокристаллов (вытягивание из расплава). Сущность очистки при зонной плавке (рис. 5-6) заключается в том, что в зоне расплава большинство примесей перемещается в направлении к холодному месту слитка при медленном перемещении зоны плавки вдоль бруска очищаемого материала примеси сосредоточиваются в одном конце и удаляются после плавки и охлаждения обрезкой. Зонная плавка германия 5 производится в графитовых лодочках 4, которые помещаются в вакуумируемые кварцевые трубы 1. Вокруг кварцевой трубы расположены витки высокочастотного индуктора 2, образующие в слитке узкие зоны плавления 5, перемещение  [c.280]


К числу существенных недостатков германиевых вентилей относится невысокая рабочая температура рабочий диапазон от — 50 до + Ж С при длительном воздействии температуры выше + 60° С в них проявляется тепловое старение, приводящее к ухудшению электрических параметров при низких температурах наблюдается значительное понижение обратного сопротивления. Кремниевые выпрямители могут работать при температуре до -1- 200° С. С точки зрения работы при высоких частотах кремниевые диоды имеют перед германиевыми преимущества, заключающиеся в большей чувствительности к слабым сигналам (пороговое напряжение у первых 0,01 В, у вторых от 0,1 до 0,25 В). Характеристики кремниевых вентилей, возможность получения больших выпрямленных мощностей в установках малых габаритов, особенно при использовании искусственного охлаждения, делают их исключительно прогрессивными. Поскольку кремний и германий являются элементами IV группы таблицы Менделеева, дырочная проводимость в них создается примесями элементов третьей группы, а электронная — элементов пятой группы. Для кремниевых полупроводников часто применяют алюминий, бор, для германиевых — индий в качестве акцепторной примеси мышьяк и сурьма (элементы V группы) — в качестве донорных примесей.  [c.284]

Если в полупроводник IV группы (кремний или германий) ввести элемент V группы таблицы Менделеева, например мышьяк, то атому примеси для завершения ковалентных связей с атомами основного вещества необходимо четыре валентных электрона  [c.269]

Для получения монокристалла по методу вытягивания из расплава тщательно очищенный от примесей германий расплавляют в установке, схема которой показана на рис. 8.11. Рабочим объемом служит герметическая водоохлаждаемая камера, внутри которой создается вакуум порядка 10 Па, или защитная газовая среда (из водорода или аргона высокой чистоты). Материал (М) помещается в тигель (А), насаженный на конец водоохлаждаемого штока (Б-1). Шток Б-1 при помощи электропривода приводится во вращение со строго постоянной скоростью. Кроме того, его можно опу-  [c.283]

Основные физические свойства кремния представлены в табл. 8.1. Проводимость кремния, как и германия, очень сильно изменяется от присутствия примесей. На рис. 8.14 приведены зависимости удельного сопротивления кремния и германия от концентрации примесей. Благодаря более широкой запрещенной зоне собственное удельное сопротивление кремния на три с лишним порядка превосходит собственное сопротивление германия.  [c.287]

В случае же введения в кристалл германия примеси атомов галлня, имеющих во внешнем слое по 3 электрона, атомы галлия используют их все для образования трех ковалентных связей с 3 соседними атомами германия. На образование же связи с четвертым атомом германия у атома галлия электрона не хватит. Эта нехватка равноценна образованию дырки на том месте, где прлагалось бы образоваться четвертой ковалентной связи. При приложении электрического поля теперь уже дырки будут перемещаться в направлении, противоположном перемещению электронов в предыдущем случае. Такой полупроводник называют позитивным (положительным).  [c.41]

Выше приведено значение удельного сопротивления германия весьма высокой чистоты, близкое к значению собственного со-ттротивления германия. Примеси сильно понижают удельное сопротивление германия. С увеличением температуры удельное электросопротивление германия (как и у всех полупроводников) понижается. Характерна зависимость электросопротивления германия от давления.  [c.376]

При обсуждении теории процессов проводимости в легированном германии был рассмотрен ряд аналитических выражений для проводимости или удельного сопротивления, в которые входят атомные константы, концентрация или свойства примесных атомов, а также температура. Было отмечено, что, несмотря на достаточно хорошее качественное согласие с экперимен-том, эти выражения нельзя применять для количественного описания характеристик конкретных материалов реальные процессы проводимости слишком сложны. Поэтому экспериментальные данные по зависимости сопротивления от температуры приходится аппроксимировать эмпирическим путем, не слишком полагаясь на физическую теорию, как, впрочем, и в случае платиновых термометров. Однако для германиевых термометров сопротивления эта задача оказывается намного сложнее по двум причинам. Во-первых, зависимость сопротивления от температуры меняется от образца к образцу гораздо сильнее, чем в случае платины, даже если эти образцы изготовлены лю одной технологии. Дело в том, что удельное сопротивление легированного германия очень чувствительно к количеству и свойствам примеси. Во-вторых, удельное сопротивление экспоненциально зависит от температуры, т. е. изменяется с температурой гораздо быстрее, чем удельное сопротивление платины.  [c.240]

Здесь flo=0,53-10 м — радиус первой боровской орбиты атома водорода. Для донорной примеси в германии получаем ai=64flo== si=34-10 м. Если учесть, что постоянная решетки германия равна  [c.238]

Германий обладает решеткой типа алмаза. По внешнему виду благодаря характерному блеску он напоминает металл. Его кристаллы очень тверды и хрупки. Содержание германия в земной коре составляет 7-10" %. Добыча его затруднена тем, что в природе этот элемент находится в рассеянном состоянии. Германий обычно обнаруживают в виде примесей в различных минералах (0,01 - 0.5%). Образование руд для него не характерно. Единственная его руда -германит, но и она содержит больше меди, железа и цинка, чЬм германия. Сравнительно высокая стоимость германия объясняется сложностью получения исходного сырья.  [c.77]

Коэффициент линейного расширения а = 6 10 VrpaA (при 10—50° С). Германий тверд (ЯВ 190), но хрупок, при нагреве выше 500° С становится пластичным. Некоторые другие физические свойства германия приведены в табл. 43 . Примеси сильно влияют на электропроводность германия достаточно ввести один атом примеси на 10 — 10 атомов германия, как электропроводность увеличивается. В ряде случаев это нежелательно, так как для приборов иногда необходим германий высокой чистоты с удельным электросопротивлением больше 10 ом-см, что достигается введением в германий определенных примесей в заданных количествах. Для получения триодов необходим германий, у которого электроны и дырки имеют большую подвижность и большое время жизни. Чистый германий обладает этими свойствами у него подвижность электронов 3900 см /в сек, подвижность дырок 1900 см /в-сек, а время жизни носителей заряда достигает 1000 микросекунд.  [c.289]

Температурные зависимости удельного сопротивления германия при различном содержании донорной примеси представлены на рис. 8.12. Германий, применяемый в полупроводниковых приборах, обладает удмьным сопротивлением от миллионных долей Ом-м до значений, близких к удельному сопротивлению собственного герма-  [c.284]

В отличие от германия основная очистка кремния от примесей осуществляется химическими методами. Кристаллизационные методы имеют цель — превратить полукристаллический кремний, полученный химическим путем, в монокристаллы с определенными  [c.286]

Удельное электросопротивление германия весьма высокой чистоты достигает 0,6 ом Незначительные количества примесей влияют на тип проводимости германия и понижают его электросопротивление. К примесям, создающим электронную проводимость германия, относятся, например, мышьяк, сурьма, фосфор (донорные прпмеси). Примеси бора, алюминия, галлия, индия (акцепторные примеси) обусловливают проводимость дырочного типа. Термическая обработка также сильно влияет на электрические свойства германия, в частности на тип проводимости (фиг. 86).  [c.527]



Смотреть страницы где упоминается термин Германий Примеси : [c.350]    [c.239]    [c.214]    [c.332]    [c.166]    [c.358]    [c.656]    [c.283]    [c.283]    [c.280]    [c.280]    [c.285]    [c.287]   
Материалы в приборостроении и автоматике (1982) -- [ c.403 ]



ПОИСК



Герман

Германии

Германий

Прима

Примеси



© 2025 Mash-xxl.info Реклама на сайте