Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Угловая скорость и ускорение как векторные величины

УГЛОВАЯ СКОРОСТЬ И УСКОРЕНИЕ КАК ВЕКТОРНЫЕ ВЕЛИЧИНЫ  [c.35]

В дальнейшем при рассмотрении общих случаев движения твердых тел придется иметь дело с вращениями вокруг подвижных осей, меняющих свое направление в пространстве, В этих случаях уже нельзя довольствоваться рассмотрением угловой скорости и углового ускорения как алгебраических величин, а становится необходимым связывать их с ориентацией в пространстве. Это достигается, если ввести угловые скорости и ускорения как векторы и в связи с этим для векторов линейных скоростей и ускорений установить векторные формулы, представляющие эти величины как по величине, так и по направлению.  [c.222]


Так как движение тела, имеющего одну неподвижную точку, в каждый момент времени можно считать вращением вокруг мгновенной оси, то в качестве величин, характеризующих это движение, можно ввести мгновенную угловую скорость и мгновенное угловое ускорение вращения твердого тела вокруг неподвижной точки. Очевидно, вводимая угловая скорость является векторной величиной, направленной в каждый момент времени по соответствующей мгновенной осп, и при  [c.171]

Запись в виде векторного произведения особенно удобна для выражения угловой скорости и углового ускорения вращающегося тела. Мы видели, что повороты на конечный угол не являются векторами, потому что два таких поворота не подчиняются закону сложения векторов. Но угловая скорость, по определению, представляет собой предел отношения бесконечно малого угла поворота к бесконечно малому интервалу времени, за который происходит этот поворот. Порядок, в котором совершаются два бесконечно малых поворота, не влияет на окончательное положение предмета, если исключить слагаемые такого же порядка малости, как квадрат величины бесконечно малых поворотов, а эти слагаемые исчезают при соответствующем переходе к пределу. В одной из последующих глав мы докажем это и рассмотрим элементарную динамику вращающихся тел.  [c.62]

Угловая скорость и угловое ускорение твердого тела, вращающегося вокруг неподвижной оси, как векторы. Чтобы получить векторные формулы, определяющие векторы скорости и ускорения точек вращающегося вокруг неподвижной оси твердого тела, условились изображать угловую скорость этого тела вектором. Модуль вектора ш, изображающего угловую скорость тела, считают равным абсолютной величине угловой скорости тела, т. е. (о = 9 . При этом вектор ш откладывают по оси вращения так, чтобы наблюдатель, смотрящий с конца этого вектора в сторону его начала, видел вращение тела совершающимся против движения часовой стрелки (правило правого винта). Что касается начала вектора со, то оно может быть помещено в любой  [c.298]

Это уравнение записано нами в скалярной форме. Однако для рассмотренного частного случая легко восстановить его векторный характер, рассматривая угловую скорость и угловое ускорение как векторы. Так как ось вращения постоянна, то вектор угловой скорости изменяется только по величине и, следовательно, вектор углового ускорения направлен по оси вращения. Вектор момента силы также направлен по оси вращения эти векторы совпадают по направлению, и мы можем написать уравнение моментов в следующем виде  [c.302]


Линейная скорость и линейное ускорение являются векторными величинами. При вращательном движении угловая скорость и угловое ускорение однозначно определяются лишь тогда, когда известно положение оси вращения в пространстве и указано направление вращения вокруг нее. Поэтому угловую скорость и угловое перемещение определяют как векторы, направление которых связывается с направлением вращения.  [c.24]

Поскольку угловая скорость — векторная величина, вектором должно быть и угловое ускорение. Но при вращении тела вокруг неподвижной оси мы обычно рассматриваем угловую скорость как  [c.167]

Поскольку угловая скорость — векторная величина, вектором должно быть и угловое ускорение. Но при вращении тела вокруг неподвижной оси обычно рассматривают угловую скорость как скаляр и потому здесь нас могут интересовать только величина и знак углового ускорения.  [c.57]

Так как движение тела, имеющего одну неподвижную точку, в каждый момент времени можно считать вращением вокруг мгновенной осп, то в качестве величин, характеризующих это движение, можно ввести Х гиовеииую угловую скорость и мгновенное угловое ускорение враще-JH H твердого тела вокруг неподвижной точки. Очевидно, вводимая угловая скорость является векторной величиной, направленной в каждый момент времени по соответствующей мгновенной оси, и при использовании правой системы координат вектор угловой скорости w направлен по мгновенной оси так, что с направления этого вектора видно вращение тела вокруг мгновенной оси, проис.ходящим против движения часовой стрелки. Величину вектора угловой скорости можно вырази гь через элементарный угол поворота Аф вокруг мгновенной оси за время ДЕ  [c.168]

Формулы (8.6) и (8.10) определяют алгебраические величины угловой скорости и углового ускорения. Можно доказать, что угловая скорость и- угловое ускорение являются величинами векторными (рис. 1.104). Вращательное движение твердого тела в данный момент времени определяется вектором угловой скорости (й и вектором углового ускорения е. Вектор о направлен по оси вращения таким обррзом, что с его конца направление вращения наблюдается против движения часовой стрелки. Модуль этого вектора равен модулю производной угла поворота по времени 1 фМ I. Вектор углового ускорения е, так же как и ш, направлен по оси вращения. Если вращение ускоренное, то направления 0) и е совпадают, если замедленное — противоположны. Модуль вектора е равен модулю производной от угловой скорости по времени или модулю второй производной от угла поворота  [c.112]

Датчики кинематических величин. Датчиком называют измерительный пгеобра-зователь, переводящий измеряемую физическую величину в величину другого физического характера, чаще всего — электрическую. Датчики кинематических величин инерционного действия наиболее широко применяют для измерения кинематических величин точки и твердого тела — абсолютных перемещений, скоростей, ускорений и т. п. (см. гл. I, разделы 4 и 5). Как правило, датчики выполняют в виде отдельного конструктивного узла. Рассматриваемые датчики являются датчиками векторных величин и подразделяются на прямолинейные и угловые [18]. Прямолинейными называют датчики для измерения Ш1нематических величин, характеризующих движение точки тела (или всего тела при его поступательном движении) вдоль заданной датчиком прямой линии.  [c.135]

Система аэродинамических сил, действующих на ракету, характеризуется результирующей силой и результирующим моментом Мл относительно точк G. Для заданной геометрической конфигурации и при данных плотности и температуре воздуха в классической механике полета величины и являются вектор-функциями скорости V, угловой скорости вращения Q и абсолютного ускорения (dV/dOae . без существенной ошибки можно пренебречь влиянием ускорения, однако тогда необходимо интерпретировать вектор-функции переменных V и Q как сечения векторного пространства при равном нулю абсолютном ускорении (dV/d/)a6 , но не как сечения при равном нулю относительном ускорении Проекции (X, Y, Z) вектора R и (L, М, N)  [c.127]


Проанализируем, можно ли решить это векторное уравнение. Так как необходимые линейные и угловые скорости определены, то абсолютные величины нормальных ускорений, а также ускорение Кариолиса определяются. Направления всех ускорений известны (для ускорения Кариолиса см. рис. 19, в).  [c.43]


Смотреть страницы где упоминается термин Угловая скорость и ускорение как векторные величины : [c.111]    [c.223]    [c.330]    [c.47]   
Смотреть главы в:

Курс общей физики Механика  -> Угловая скорость и ускорение как векторные величины



ПОИСК



Векторные

Величина векторная

Скорость векторная

Скорость и ускорение

Скорость угловая

Угловая скорость и угловое ускорение

Ускорение угловое



© 2025 Mash-xxl.info Реклама на сайте