Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения осесимметричного деформирования оболочек вращения

Основные уравнения осесимметричного деформирования оболочек вращения  [c.177]

Основные уравнения осесимметричного деформирования безмоментных оболочек вращения за пределами упругости были получены и использованы для решения ряда задач А. С. Григорьевым [18—20, 23].  [c.177]

В гл. 4 основное внимание уделено многослойным оболочкам вращения, у которых упругие характеристики отдельных слоев примерно одинаковы. Для описания деформирования применяются два подхода. Первый основан на гипотезах Кирхгофа—Лява, второй — на обобщении гипотез С. П. Тимошенко. Рассмотрены способы решения с помощью МКЭ и численного интегрирования систем дифференциальных уравнений задач статики, устойчивости и колебаний, а также вопросы стыковки оболочек с кольцевыми подкрепляющими элементами. Приводится решение задач об осесимметричном деформировании тонкой многослойной оболочки, выполненной из композиционного материала с хрупкой полимерной матрицей, с учетом геометрической, физической и структурной нелинейностей.  [c.122]


Параметр с в уравнении (527), которое описывает напряженное и деформированное состояния осесимметрично нагруженных оболочек вращения вблизи полюса, равен единице. Следовательно, основное дифференциальное уравнение рассматриваемой задачи имеет вид  [c.163]

Структура исходных уравнений нелинейной теории многослойных анизотропных оболочек довольно сложна, получить аналитическое решение уравнений (1.42), (1.43) непросто, позтому будем ориентироваться на их численное решение на ЭВМ, В последние годы самое широкое распространение и признание получила методика решения задач прочности оболочек вращения, согласно которой исходная система уравнений, описывающих напряженно-деформированное состояние конструкции в геометрически линейной постановке, сводилась к решению краевой задачи для нормальной системы обыкновенных дифференциальных уравнений. Этот прием в сочетании с методом ортогональной прогонки оказался настолько плодотворным, что проблема расчета осесимметричных оболочек вращения в классической постановке оказалась в основном завершенной [ 1.16].  [c.23]

Уравнения бифуркационной потери устойчивости конечного элемента оболочки (уравнения по отысканию нагрузки выпучивания оболочки) следуют непосредственно из равенства (33), если его правую часть приравнять нулю. Прн этом варьирование в функционалах осуществляется по перемещениям в бесконечно близкой, но отличной от основного, осесимметричного, деформированного состояния оболочки. Так, если при осесимметричных нагрузках перемещения в пределах конечного элемента оболочки вращения описываются согласно выражениям (24), когда параметр волнообразования п—О, то в точке бифуркации на исходное осесимметричное поле перемещений накладывается дополнительное бесконечно малое (неосесимметричное. пфО) поле перемещений и варьирование в функционалах равенства (33) осуществляется именно по этим дополнительным перемещениям. Для нахождения точек бифуркации на кривой нагрузка—перемещение основное поле перемещений оболочки представим в виде  [c.288]

Содержание книги отвечает следующему плану сначала рассматриваются термодинамические основы термоупругости и дается постановка задачи термоупругости для самого общего случая, когда приращение температуры не является малой величиной по сравнению с начальной температурой, а нестационарные процессы деформирования сопровождаются существенными динамическими эффектами и взаимодействием между полями деформации и температуры затем приводятся основные уравнения квазистатической задачи термоупругости и сообщаются основные сведения по теории стационарной и нестационарной теплопроводности, необходимые для исследования температурных полей и соответствующих им тепловых напряжений в квазистатической и динамической постановках далее разбираются основные классы квазистатических задач термоупругости (плоская задача термоупругостн, задача термоупругостн круглых пластин и оболочек вращения, осесимметричная пространственная задача термоупругости) в последних двух главах рассматриваются динамические и связанные задачи термоупругости.  [c.3]


Основной расчетной схемой при анализе напряженно-деформирован-ного состояния конструкций типа баллонов давления является слоистая безмоментная оболочка вращения. Оболочка нагружена постоянным внутренним давлением р и осевыми силами Ро, равномерно распределенными по краю полюсного отверстия радиуса Гц. Осевые силы могут изменяться от значения Со = О Для баллона с открытым полюсным отверстием до значения Со = рт 2, соответствующего полюсному отверстию, закрытому жесткой силовой крышкой. В числе слоев могут быть изотропные типа внутренней герметизирующей оболочки и слои из композита, образованные нитями, уложенными под углами +фг или —фг к образующей. Учитывая взаимодействие между слоями, уравнения равновесия слоя при осесимметричном нагружении можно записать в виде [14]  [c.353]


Смотреть главы в:

Ползучесть в обработке металлов (БР)  -> Основные уравнения осесимметричного деформирования оболочек вращения



ПОИСК



124 — Уравнение с вращением

Оболочки вращения

Оболочки уравнения

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте