Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Керамико-полимерные материалы

В настоящее время нет такого материала для подложек, который в одинаковой мере удовлетворял бы этим разнообразным требованиям. Многие органические материалы не могут быть использованы в качестве подложек из-за температурных режимов формирования элементов микросхем. Исключение составляют лишь некоторые полимерные материалы, например лавсан и полиамид. Поэтому для подложек используют в основном стекла и керамики. Монокристаллические подложки из-за их высокой стоимости используются для гибридных интегральных схем в редких случаях.  [c.415]


В общем, полимерные материалы являются плохими проводниками тепла. Следовательно, их особенно хорошо применять для тепловой изоляции. Изолирующие свойства можно значительно улучшить, придав материалу пенистую структуру. Наоборот, применение металлического наполнителя может привести к некоторому увеличению теплопроводности. Теплопроводность полимерных материалов без наполнителя сравнима с теплопроводностью дерева или керамики и вместе с тем в десятки и даже сотни раз ниже теплопроводности металлов.  [c.30]

К неметаллическим материалам относятся полимерные материалы органические и неорганические различные виды пластических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные покрытия, а также графит, стекло, керамика.  [c.434]

К неорганическим материалам относятся горные породы, силикатные материалы, керамика и т.д. К органическим материалам относятся полимерные материалы, материалы на основе каучука, графит и его производные и т.д.  [c.225]

Следует отметить, что выполнение подпрограммы оказывает сильное влияние на повышение качества преподавания, привлечения студентов к творческой исследовательской работе. С выполнением подпрограммы связано дальнейшее развитие материально-технической, информационной баз и развитие научных школ системы высшего образования. В частности, достижением подпрограммы является созданный в МИСиС Межвузовский научно-исследовательский Центр коллективного пользования Металлургия и металловедение . Центр располагает первоклассным оборудованием, которое позволяет анализировать все объекты выполняемых исследований металлы и сплавы, диэлектрики, композиты, керамику, сверхтвердые материалы, органические полимерные материалы и др.  [c.6]

Для электроизоляционных материалов решающее значение имеет их стойкость к нагреву, т.е. способность без ущерба для свойств выдерживать нагрев в течение длительного времени. По этой стойкости диэлектрики разделяют на классы (ГОСТ 8865-93) Y, А, Е, В, F, Н и др. В классе Y объединены наименее стойкие целлюлозные, шелковые и полимерные материалы, для них рабочая температура не превышает 90°С. Самыми стойкими к нагреву являются слюда, керамика, стекло, ситаллы, а также полиимиды и фторопласт-4. Они выдерживают длительный нагрев 180 °С и выше.  [c.603]

Область применения композитных материалов на полимерной основе постоянно расширяется. Конструкции из полимерных композитов используются в качестве несущих элементов и деталей машин, летательных аппаратов, водных и наземных транспортных средств, протезирующих систем, продолжается внедрение полимерных материалов в строительство и мелиорацию. Важное место занимают они среди конструкционных материалов новых видов техники. Постепенное вытеснение полимерными композитами классических конструкционных материалов (древесины, сталей, металлических сплавов и обычных видов керамики) обусловлено сочетанием в них целого ряда практически важных качеств. Во-первых, это высокие удельные значения деформативных и прочностных характеристик, реализованные в таких широко известных современных композиционных материалах на полимерной основе, как стекло-, угле-, боро- и органопластики. Во-вторых, химическая и коррозионная стойкость, а также широкий спектр электрофизических и тепловых свойств полимерных композитов. В-третьих, их высокая экономическая эффективность как материалов, производимых из дешевых видов сырья. Наконец, высокая технологичность полимерных композитов при применении их в габаритных изделиях различных геометрических форм. По совокупности всех этих показателей композиционные материалы на полимерной основе успешно конкурируют с классическими конструкционными материалами.  [c.8]


Футеровка защищаемой поверхности штучными кислотоупорными изделиями. Для образования этого вида покрытия на защищаемую поверхность укладывают штучные кислотоупорные изделия на специальных вяжущих материалах (химически стойких замазках) с последующей сушкой уложенной футеровки. В качестве штучных кислотоупорных изделий для футеровок чаще всего используют блоки или специальные штучные изделия из природного камня плитки, кирпичи или блоки из кислотоупорной керамики плитки из ситалла, плавленого базальта, стекла, фарфора, пропитанного графита и некоторых полимерных материалов.  [c.79]

Этим методом можно изготавливать покрытия из всех полимерных материалов, которые после подогрева до требуемой температуры не меняют структуры, химического строения и свойств. Подобные покрытия могут наноситься не только на металлы, но и на стекло, фарфор, керамику, пластмассы и даже на определенные сорта дерева.  [c.175]

Процесс проводится в стальных ваннах, футерованных изнутри полимерными материалами, резиной или керамикой. Пред-188  [c.188]

Развитие современной техники, создание машин и аппаратов, качество которых не только не уступало бы, но и было выше лучших мировых образцов, немыслимо без широкого использования полимерных материалов. Полимеры и пластмассы на их основе все чаще заменяют традиционные материалы, например такие, как цветные металлы, дерево, керамика.  [c.24]

Многообразие соединяемых материалов ох У у У У н X ох у у ох Металлы, полимерные материалы, керамика, сочетания материалов  [c.22]

Из неметаллических материалов в двуокиси хлора и ее водных растворах стойки природные кислотоупорные материалы, плавленые базальт и диабаз, кислотоупорная керамика, фарфор, силикатная эмаль, стекло, винипласт, полиметилметакрилат, фторопласты, полиэфирные смолы и некоторые другие полимерные материалы.  [c.257]

В табл. 2.1 представлены данные, характеризующие коррози онную СТОЙКОСТЬ различных металлов в хлористом этиле. Как слв дует из таблицы, большинство металлов и сплавов инертно к действию сухого хлористого этила. В присутствии влаги стойкость углеродистой стали, низколегированных сталей и многих сплавов в хлористом этиле значительно снижается. Приведенные на стр. 100 т. 2 настоящего издания данные показывают, что керамика, стекло, кварцевое стекло, силикатные эмали, кислотоупорные силикатные цементы и замазки, графит, пропитанный феноло-формальдегидной смолой, фаолит А и прочие материалы на основе этой смолы, фторопласт-3 и -4 и эпоксидные смолы обладают хорошей стойкостью. Полимерные материалы — полиизобутилен, полиэтилен, полиметилметакрилат, поливинилхлорид не стойки [1, 5] резины и эбониты на основе натурального каучука и синтетических эластомеров растворяются или сильно размягчаются в хлористом этиле [1].  [c.55]

Из неметаллических материалов практически вполне стойки в дихлорэтане плавленый диабаз, кислотоупорная керамика, фарфор, стекло, кислотоупорная силикатная эмаль, фторопласт-4, уголь и графит, пропитанные феноло-формальдегидной смолой, фаолит А и прочие материалы на основе феноло-формальдегидной смолы, резины на основе фторкаучука (табл. 3.2). Большинство Других полимерных материалов в дихлорэтане легко растворяется или набухает, особенно при повышенных температурах.  [c.71]

Как видно, высокой стойкостью даже при температуре кипения обладают природные керамические кислотоупоры, кислотоупорная эмаль и керамика, кварц, ситалл, стекло, фарфор, а также некоторые полимерные материалы фторопласт-3, -4, графит, пропитанный феноло-формальдегидной смолой, полиэфирные смолы.  [c.131]

В табл. 8.2 представлены данные, характеризующие стойкость неметаллических материалов в водных растворах трихлоруксусной кислоты. Как видно, высокой стойкостью обладают кислотоупорная эмаль, керамика, стекло, фарфор, кислотоупорные силикатные замазки, а также полимерные материалы полиизобутилен ПСГ, фторопласт-3 и -4, покрытия на основе бакелитового лака и др. Полиэтилен, полистирол, полиметилметакрилат, а также резины на основе синтетических каучуков легко разрушаются уже при комнатной температуре.  [c.169]

Эпихлоргидрин не агрессивен по отношению к металлам и сплавам (табл. 10.1). Наличие в нем воды не оказывает существенного влияния на их стойкость даже при повышенных температурах. Высокой стойкостью в эпихлоргидрине обладают также керамика, фарфор, стекло, графи и отдельные виды полимерных материалов (табл. 10.2).  [c.195]


Из неметаллических материалов хорошей стойкостью в хлорбензоле обладают керамика, стекло, фарфор, фторопласт-4, графит, пропитанный феноло-формальдегидной смолой, и прочие материалы на ее основе (табл. 12.1). Большинство других полимерных материалов в хлорбензоле значительно набухает или разрушается, особенно при повышенной температуре.  [c.259]

В литературе [1] указывается, что в сухом трихлорбензоле все металлы обладают высокой коррозионной стойкостью. Из неметаллических материалов в нем стойки асбест, эмаль, стекло, керамика, кислотоупорные замазки, а также графит и уголь. Резины на основе натурального и синтетических каучуков, полиизобутилен, полистирол и другие полимерные материалы значительно набухают [2].  [c.287]

Из неметаллических материалов высокой химической стойкостью в водных растворах хлораминов обладают диабазовое литье, керамика, стекло, фарфор, силикатная эмаль, портландцемент и кислотоупорные замазки, а также полимерные материалы полиизобутилен, полиэтилен, винипласт и хлоркаучук из НК.  [c.371]

Преимущество клеевых соединений заключается в том, что с помощью синтетических полимерных материалов можно склеивать разные пластмассы (реактопласты и термопласты) между собой, а также пластмассы с металлом, тканью, стеклом, деревом, керамикой и другими материалами. Кроме того, клеевые соединения обеспечивают хорошую герметичность и обладают относительно хорошей сопротивляемостью вибрационным нагрузкам. Их основной недостаток — невысокая прочность, особенно при повышенных температурах.  [c.177]

На фоне стабильного роста применения органических полимерных материалов и вполне реалистических более радикальных попыток замены металла на пластмассы для изготовления массивных деталей гораздо более туманными (но отнюдь не авантюрными) выглядят идеи использования материалов других крупнотоннажных производств химической промышленности, а именно керамики, для изготовления двигателей. Об этом много говорят, но в ближайшем будущем это направление, видимо, останется в рамках рекламных описаний, так что обсуждать технологические и экономические перспективы керамических двигателей пока преждевременно, хотя химическая промышленность должна внести свой вклад в создание материалов для исследований в этом направлении.  [c.7]

Изготовляемая формообразованием из полимерных материалов, керамики, стекла и резины С покрытием  [c.252]

КТО систематизирует наименования технологических процессов, методы изготовления и ремонта изделий и соответствующих классификационных группировок наименований технологических операций и их кодовых обозначений. В классификаторе дается описание системы классификации и кодирования технологических операций и таблицы классификационных группировок технологических процессов и технологических операций в зависимости от применяемого метода изготовления. Классификатор состоит из 19 разделов операции общего назначения, куда вошли операции, которые по своему составу и назначению могут применяться в различных технологических процессах, методах, например, такие как промывка, обезжиривание, пропитка, сушка и пр. операции технического контроля перемещения испытания консервации упаковывания литье металлов обработка давлением обработка резанием термическая обработка формообразование из полимерных материалов, керамики, стекла и резины порошковая металлургия получение покрытий (металлических и неметаллических неорганических) электрофизическая, электрохимическая и радиационная обработка получение покрытий органических (лакокрасочных) пайка сборка электромонтаж сварка.  [c.260]

В тех случаях, когда одновременно с коррозионными воздействиями наблюдаются и механические, щтучная керамика, видимо, будет еще применяться длительное время, так как полимерные материалы подвержены старению и многие из них по механической прочности еще уступают керамике. Ряд полимерных материалов с высокой химической стойкостью к тому же трудно перерабатывается (склеивается, сваривается и т. д.), в связи с чем они не получили пока достаточного применения. Поэтому повышение качества используемых ныне защитных покрытий является также первостепенной задачей.  [c.71]

Универсальность метода испарения и конденсации в вакууме позволяет наносить покрытия на различные диэлектрические подложки пластмассы, бумагу, стекло, керамику, ткани. Много работ посвящено электрическим, магнитным и оптическим свойствам тонких пленок на диэлектриках, в то время как вопросам нанесения защитно-декоративных покрытий, а также металлизации рулонных и листовых полимерных материалов уделяется недостаточно внимания.  [c.301]

При создании конструкций соединения следует иметь в виду, что модуль нормальной упругости и прочность полимерных материалов, используемых в качестве адгезива, существенно меньше, чем у металлов, керамики, напол-  [c.558]

В качестве штучных кислотоупорных изделий для футеровок чаще всего используют блоки и специальные штучные изделия из природного камня плитки, кирпичи и блоки из кислотоупорной керамики плитки из ситалла, плавленого базальта, стекла, фарфора, пропитанного графита и некоторых полимерных материалов.  [c.151]

Благодаря высоким малярно-техническим свойствам, свето- и термостойкости, оксид хрома применяется для многих полимерных систем с целью придания им зеленого цвета. Единственный недостаток пигмента — он имеет неяркий цвет. Оксид хрома широко используется в лакокрасочных системах, для окрашивания керамики, строительных материалов, резины, а также ряда полимерных материалов, где он ценится за исключительно высокую стойкость.  [c.77]

Керамико-полимерные материалы  [c.142]

В капиллярно-пористых материалах жидкость в основном связана капиллярными силами. При удалении влаги эти тела становятся хрупкими и в высушенном состоянии легко превращаются в порошок. Они слабо сжимаются. В качестве примера таких материалов можно привести силикагель, гипс, керамику, полимерные материалы типа винилхлоридных.  [c.218]

Значительного повышения качества деталей шарикоподшипников, особенно их теплостойкости, можно достигнуть применением НОВЫХ материалов, например пластмассы, особых видов керамики, пористых материалов, пропитанных соответствующими пластиками, И Х д. Применение сепараторов из полимерных Материалов или прессованных порошков может повц-сить качестйо и долговечность шарикоподшипников.  [c.104]


Конденсационные котлы и экономайзеры изготовляют из самых разных материалов. Общим для них является высокая коррозионная стойкость, поскольку конденсат, образующийся при конденсации паров из продуктов сгорания, имеет кислую реакцию. Для изготовления котлов преимущественно используют нержавеющую сталь. Но известны и котлы из чугуна, биметаллических труб (сталь +алюминий), меди, полимерных материалов и даже керамики. Применение ко,ррозионно стойких материалов позволило создать котлы конденсационного типа также и для жидкого топлива. Многие конденсационные отопительные котлы и экономайзеры демонстрировались на Международной выставке-ярмарке санитарно-технического оборудования ISH-85 [196].  [c.240]

К неорганическим полимерным материалам относятся минеральное стекло, снталлы, керамика и др. Этим материалам присущи негорючесть, высокая стойкость к нагреву, химическая стойкость, неподверженность старению, большая твердость, хорошая сопротивляемость сжимающим нагрузкам. Однако они обладают повышенной хрупкостью, плохо переносят резкую смену температур, слабо сопротивляются растягивающим и изгибающим усилиями имеют большую плотность до сравнению с органическими полимерными материалами.  [c.504]

Для повышения прочности керамико-полимерных композиционных материалов осуществляют модифицирование структуры полимера за счет введения нанодисперсных керамических частиц (2...3 мае. %) либо путем упрочнения полимерной матрицы стеклотканью или стекловолокнами. Тег( 1офизические характеристики керамико-полимер-ного материала повышают за счет введения специальных наполнителей (керамических и металлических порошков, порошков искусственного алмаза или графита), которые изменяют химический состав и повышают физико-механические свойства материала.  [c.142]

Из керамико-полимерных композиционных материалов получают эластичные теплоотводящие диэлектрики и, добавляя в них углеродные волокна, изготавливают гибкие нагреватели, в которых эти волокна служат нагревательным элементом. Технические характеристики гибких нагревателей представлены в табл. 8.2.  [c.143]

Компенсатор — см. Термомагнитные сплавы Композитные полимерные материалы 2—399 Компрег — см. ДревесЕгые слоистые пластики Конденсаторная бумага 1—153 Конденсаторная керамика 1—369, 380 2—376 Кондиционирование образцов 1—406 Конопленко В. П. машина 2—207 Консервация алюминиевых сплавов 1—406  [c.505]

Основу неорганических полимерных материалов составляют соединения Si02, СаО, MgO, AI2O3 и др. Представителями таких полимеров являются силикатные стекла, керамика, асбест, слюда.  [c.144]

В гааообразном хлоре обладают каменное литье, керамика, фарфор, стекло, эмаль, кислотоупорный бетон и цемент на жидком стекле, а при высоких температурах — высокоглиноземистый, шамотный и кислотоупорный кирпич, динас и ряд других материалов неорганического происхождения (табл. 1.7). С большинством полимерных материалов хлор вступает в химическое взаимодействие образованием на поверхности слоя из продуктов хлорирования разного состава. В зависимости от природы материала возможно образование плотного слоя продуктов реакции, в значительной мере затормаживающего процесс хлорирования, или рыхлого, не обладающего защитными свойствами.  [c.22]

В зависимости от химического состава неметаллические материалы подразделяют на материалы органического и неорганического происхожде1шя. К органическим материалам относятся полимерные материалы, вяжущие материалы (арзамиты), материалы на основе каучука, непластичные материалы (древесина, уголь, графит), лакокрасочные материалы. К неорганическим материалам относятся горные породы силикатные материалы, получаемые плавлением горных пород керамику получают методом спекания.  [c.71]

Для защиты от коррозии широко применяются неметаллические химически стойкие материалы — кислотоупорная керамика, углеграфитовые материалы, жидкие резиновые смеси, листовые и пленочные полимерные материалы, конструкционные стеклопластики и бипластмассы, химически стойкие лакокрасочные материалы, латексы на основе натуральных и синтетических каучуков и др.  [c.3]

Выбор ТСМ. Как уже отмечалось, в зависимости от природы основы различают ТСМ неорганические со сложной (ламеллярной) структурой, органические, полимерные материалы, а также замороженные СОТС [4, 37, 46]. Для улучшения адгезии ТСМ к обрабатываемому материалу и шлифовальному кругу в него вводят связующие органические продукты двух классов - акриловые, алкидные, фениловые смолы и ацетаты термоактивные пластмассы (феноляты, эпоксифеляты, силоксаны, эпоксидные смолы, полиамидные и полиимидные смолы и уретаны) неорганические - силикаты, фосфаты, керамику. Функции связующего могут выполнять стеарин, парафин, воск, а антифрикционного наполнителя - сера.  [c.313]

Конструктивные особенности оборудования. Корпусное оборудование горизонтальных НТА изготовляют из конструкционной стали, затем подвергают многослойному 1уммирова-нию и футеруют кислотоупорной керамикой. Вдоль боковых стенок ванн имеются коллекторы для отсасывания паров кислоты, сверху ванны плотно накрыты 1фышками из кислотоупорного пластика. Торцевые щели для входа и выхода полосы имеют уплотнения из кислотостойкой резины. Полимерные материалы используют для кожухов струйных башен, трубоприводов и коллекторов.  [c.561]

Металлич. покрытия (А1, Сп, Ag и т. д.) широко применяются для защиты материалов и конструкций от механич. и тепловых воздействий, для защиты от агрессивных сред. Для соединения различных материалов их покрывают многокомпонентными припоями. В ряде случаев такие покрытия трудно или невозможно создать без воздействия УЗ. УЗ-вые М. и п. обеспечивают металлизацию алюминия и его сплавов, титана, ниобия, керамики (в т. ч. пьезокерамики), стекла, ферритов, полимерных материалов сокращают время пайки, повышают качество и прочность соединений позволяют получить соединения металл — керамика, металл — стекло, металл — полимер. Рассмотренные процессы применяются при М. и п. различных проволок — выводов к конденсаторам и сопротивлениям, проводов термопар, при сращивании алюлшниевых кабелей для припайки клемм и выводов заземления к проводам и кожухам, выполненным из алюхминиевых сплавов при пайке крепёжных лепестков и отводов к стеклу, керамике, ферритам, полупроводниковым материалам при исправлении дефектов в алюминиевых отливках и пайке (металлизации) деталей из силуминовых сплавов, титана, нержавеющей стали, чугуна при нанесении защитных покрытий на различные стали.  [c.210]

По химической стойкости политетрафторэтилен превосходит все изв естные синтетические полимерные материалы, специальные сплавы, антикоррозионную керамику и даже благородные металлы (серебро, платину, золото). На фторопласт-4 не действуют разбавленные п концентрированные кислоты, в том числе царская водка , хлорсульфоиовая кислота, горячая азотная кислота, концентрированные щелочи. Политетрафторэтилен нерастворим и не набухает ни в одном из известных растворителей, за исключением фторированного керосина. Фторопласт-4 имеет низкий коэффициент трения. Это свойство полимера используют при изготовлении втулок подшипников скольжения. Кроме того, из фторопласта-4 изготовляют электро- и радиотехнические изделия, пленки, волокна, уплотнительные детали.  [c.146]


Смотреть страницы где упоминается термин Керамико-полимерные материалы : [c.78]   
Смотреть главы в:

Технология конструкционных материалов  -> Керамико-полимерные материалы



ПОИСК



Керамика

Материалы Керамика

Полимерные материалы



© 2025 Mash-xxl.info Реклама на сайте