Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Родий-тантал

Натрии Рубидий Родий Тантал  [c.364]

Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий).  [c.39]


В США запатентован резистивный сплав на основе одного из благородных металлов (серебра, циркония, палладия, золота, платины, родия) и двух металлов из следующей группы (вольфрама, молибдена, тантала, рения). Температурный коэффициент сопротивления пленок, нанесенных катодным или ионно-плазменным распылением, составляет 6-10 К >.  [c.444]

Палладий Pd Платина Pt Плутоний Ри Празеодим Рг Рений Re Родий Rh Ртуть Hg Рубидий Rb Рутений Ru Самарий Sm Свинец РЬ Селен Se Сера S Серебро Ag Скандий S Стронций Sr Сурьма Sb Таллий Т1 Тантал Та Теллур Те Тербий ТЬ Титан Ti Торий Th Тулий Ти  [c.9]

Платима (Pt). . , Рений (Re). ... Родий (Rh),. . , Ртуть (Н ). ... Рутений (Ru). , Свиней РЬ). . . Серебро (Ag).. . Сурьма (Sb). , . Таллий (Т1). .. Тантал (Та). , , Титан (Ti). . . . Торий (I h). ..  [c.426]

Платина твердая при 1480 С. . . Платина жидкая Платинородий (90% 10 / ). ... Родий твердый. Родий жидкий. Серебро твердое жидкое. . . Свинец жидкий. Тантал твердый Титан твердый. Титан жидкий. Торий твердый. Торий жидкий. Углерод твердый Уран твердый. Уран жидкий. Хром твердый. Хром жидкий. Цирконий твердый Цирконий жидкий Сталь твердая. . Сталь твердая угле родистая. ... Сталь жидкая. . Чугун твердый. . Чугун жидкий при 1540 С. . ,  [c.307]

Что же происходит с аустенитной сталью, стабилизированной титаном или ниобием и танталом, в результате такой своеобразной термической обработки В такого рода сталях, как известно, часть углерода находится в твердом растворе (до 0,02—0,03%), основная же его масса связана в стабильные карбиды титана или ниобия и тантала, равномерно распределенные в -твердом растворе. Небольшое избыточное количество элементов-стабилизаторов также находится в твердом растворе. Несмотря на высокую  [c.181]

Тантал, вольфрам, иридий, родий, золото, платина (без доступа воздуха), эбонит,резина(до бО Уу), андезит, стекло, бакелит, фаолит Те же и, кроме того, сплав железа с кремнием (14—16% 8 ), антихлор (16—17% 81, 2,5— З /п Мо), свинец, винипласт Те же, что и для концентрированной соляной кислоты при высокой температуре  [c.83]

Высокая чистота потребовалась в последнее время не только для металлов. Для применения в области высоких температур широко используют в настоящее время силициды, карбиды, бориды таких металлов, как тантал, вольфрам, ниобий и др. Так, в литературе указывается, что для изготовления различного рода изделий, например подшипников, работающих при высоких температурах, для производства режущего инструмента и деталей, работающих на износ, применяют борид титана высокой чистоты.  [c.526]

Особо высокотемпературные (температура более 1200°С) жидкометаллические тепловые трубы. Вблизи нижней границы данного температурного диапазона предпочтительной рабочей жидкостью является литий, а в качестве материала стенки может служить сплав ниобий-цирконий или тантал. При более высоких температурах рабочей жидкостью может быть серебро с корпусом из вольфрама или рения. Данные по совместимости этих веществ и по результатам ресурсных испытаний тепловых труб, выполненных из этих материалов, приведены в гл. 3. Подобного рода тугоплавкие материалы обладают высокой степенью сродства к кислороду, поэтому они должны работать в вакууме или в атмосфере инертного газа.  [c.144]


Углерод. . Вольфрам Тантал. . . Иридий. . Родий. . . Платина. . Палладий. . Берлинский фар фор. ... Железо (чистое Кобальт. . . Никель. ... Литое железо  [c.545]

Разрабатывались способы восстановления в пламенной струе ряда тугоплавких металлов из кислородных соединений, преимущественно окислов — окислы и карбиды вольфрама, молибдена, ниобия, тантала. Установлено, что поведение веществ, вводимых в струю газовой плазмы, определяется температурой газа и градиентом по сечению и оси струи, скоростью истечения струи, условиями тепло- и массообмена в ней, родом и свойствами, составом, физикохимическими свойствами обрабатываемого материала, размером и формой частиц, их концентрацией и распределением в струе, временем пребывания в зоне высоких температур и т. д. Анализ влияния большинства факторов практически невозможен без применения методов математического моделирования, без теплофизических расчетов, которые ввиду их сложности требуют применения машинной техники. Иллюстраций 7.  [c.483]

К благородным металлам относятся золото, серебро, тантал, платина и металлы платиновой группы—осмий, иридий, родий и пр. Все благородные металлы имеют положительные электродные потенциалы, что обусловливает их высокую химическую стойкость в большинстве агрессивных сред.  [c.155]

Многочисленные цветные металлы в свою очередь подразделяются в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Последние в свою очередь условно делят на тугоплавкие (вольфрам, молибден, ванадий, тантал, ниобий, цирконий) редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.) рассеянные (германий, рений, селен и др.) и радиоактивные (уран, торий, радий, протактиний).  [c.20]

При маркировке цветных сплавов приняты следующие обозначения А - алюминий Б - бериллий Бр - бронза В - вольфрам Г - германий Гл - галлий Ж - железо Зл - золото И - иридий К - кремний Кд - кадмий Ко - кобальт Л - латунь М - медь Мг - магний Мц - марганец Мш - мышьяк Н - никель Нд - неодим О - олово Ос - осмий Пд -палладий Пл - платина Р - ртуть Ре - рений Рд - родий Ру - рутений С - свинец Ср - серебро Сл - селен Су - сурьма Ти - титан Тл - таллий ТТ - тантал Ф - фосфор X - хром Ц - цинк.  [c.568]

Вольфры Иридий Молибден Тантал. Хром. . Ниобий. Родий. Кобальт Железо. Никель. Ванадий Титан. Цирконий  [c.82]

К сожалению, иридий и родий —дороги, вольфрам, молибден, тантал и ниобий нуждаются в защите от окисления при высокой температуре, а хром при его чистоте очень хрупок.  [c.82]

Сварка в среде инертных газов может производиться на постоянном и переменном токе. При этом необходимо иметь в виду, что род тока оказывает существенное влияние на конечные результаты сварки. Так, например, при сварке малоуглеродистой, низко- и среднелегированной, нержавеющей высоколегированной и жаропрочной сталей, а также титана и его сплавов, циркония, молибдена, тантала, меди и ее сплавов и других активных металлов хорошие результаты получаются при использовании постоянного тока прямой полярности. Постоянный ток обратной полярности для указанных металлов не рекомендуется.  [c.307]

Особое распространение в современной технике получили металлы середин больших периодов системы Д. И. Менделеева титан, цирконий, ванадий, ниобий, тантал, хром, молибден, вольфрам, рений, не говоря уже о металлах VIII группы железе, кобальте и никеле, значение в технике которых непрерывно возрастает. Сейчас используются и платиновые металлы иридий, родий, палладий и платина (Ки и Оз пока еще применяются мало).  [c.10]

Трой и Стевен [57] также занимались изысканием термопар. Они для работы при высоких температурах исследовали несколько термопар из тугоплавких и редких металлов. Эта работа по существу явилась продолжением работы Шульце, который в 1938 г. [58] предложил следующие термопары платина —платина +8% рения (до 1600°) родий—платина+ +8% рения (до 1800°) родий — родий -t-8% рения (до 1900°) иридий — иридий +10% рутения (до 2300°). Было установлено, что сплав платины с 8% рения при рекристаллизащ и делается хрупким. Трой и Стевен исследовали различные комбинации вольфрама, молибдена, тантала, платины, родия, иридия, а также сплавы из этих металлов и определяли их э. д. с. в нейтральной атмосфере. Они пришли к выводу, что оптимальными свойствами обладает вольфрам-иридиевая термопара, которая имеет высокую э. д. с. выше 1000°, незначительную э. д. с. при комнатной температуре и почти линейную градуировочную зависимость между 1000 и 2100°. Было обнаружено, что после выдержки при высоких температурах в атмосфере  [c.100]


В качестве материалов для анодов можно использовать также нержавеющие стали, тантал, покрытый родием (гальванически), титан, медные сплавы. Эффективно использование сплава А1-1п. В морской воде алюминий и некоторые сплавы алю-м йния имеют потенциал —700- —600 мВ — меньший, чем можно было ожидать, вследствие образования на поверхности оксидной пленки.  [c.95]

Большой интерес представляет покрытие Sn—А1—Мо для защиты ниобия, тантала, молибдена и вольфрама. Оно наносится шликерным методом [34, 35] смесь металлических порошков с низкоусадочным лаком наносится на изделие пульверизацией, обмазкой, окунанием и т. д. и после сушки подвергается обжигу в вакууме или инертной среде. Примерный состав покрытия 15—50% А1, 5—15% тугоплавкого металла (Мо) —остальное Sn. Лак способств ует лучшей адгезии покрытия. Такого рода покрытия на тантале применяются для защиты ведущих кромок тепловых экранов и частей возвращаемых космических аппаратов. Покрытия состава Sn— 27 А1 — 5,5 Мо наносятся в 2 слоя и обеспечивают защиту деталей сложной формы, а состава Sn — 27,5 А1 — 6,9 Moi — наносятся в один толстый слой и отличаются высоким сопротивлением эрозии. Структура такого покрытия представляет собой алюминид тантала (ТаА1з) на границе раздела подложка — покрытие, далее следует Sn—А1-слой, наружная часть которого армирована частицами M0AI3 игольчатой формы. Слой Sn—А1 играет роль поставщика алюминия, обеспечивающего защиту, олово смягчает напряжения, возникающие в покрытии. Покрытие Sn — 27 А1—5,5 Мо на Та толщиной 250 мкм защищает металл от окисления при 1270° С в течение более 230 час., а при 1600° С — более 75 час. При давлениях Яо2>1 мм рт. ст. и температурах выше 1480° С по утверждению авторов [34—35], они имеют преимущества по сравнению с силицидными покрытиями на тантале.  [c.223]

Сплав железа с кремнием (14—1б7о Высокохромистые сплавы (выше 27% Сг). Стеллит, золото, платина, эмаль Те же и, кроме того, алюминий, хромоникелевые стали, хромистая сталь, свинец Железокремнистый сплав (выше 16% 81), хромистые стали (выше 27% Сг), хромоникелевая сталь 18-8, стеллит, золото, платина, эмаль Те же и дополнительно хромистые беспористые покрытия, винипласт, кислотоупорный бетон Тантал, сплав платины с танталом, иридий, родий, стеллит, серебро Хромоникелевая сталь (18—25% Сг, 8—9%Н1 , хромоникелевая сталь с добавкой Мо, железокремнистый сплав (14—16% 81), свинец (с 4% сурьмы), стеллит, серебро, золото, иридий Те же и дополнительно хромистая сталь, платина, стекло, фарфор, керамика, эбонит, фаолит Те же, что и для концентрированной кислоты при высокой температуре и, кроме того, кремнистая медь, тантал (до концентрации кислоты 33 /ц при 10и° С), резина (до 110°)  [c.84]

Под тугоплавкими условно понимают металлы, температура плавления которых превышает температуру плавления хрома (1875° С). Таким образом, к тугонлавким металлам в порядке возрастания температур плавления следует отнести хром, ванадий, родий, гафний, рутений, иридий, молибден, тантал, ниобий, осмий, рений и вольфрам.  [c.460]

В отличие от металлов с гранецентрированной кубической решеткой (рис. V. 25), таких, как никель, платина, иридий, родий, золото, серебро, медь п др., для объемоцентрцрованных металлов характерно непропорционально большее увеличение предела текучести, максимального напряження при разрушении и твердости с понижением температуры, в особенности в определенных критических интервалах температур. На рис. V. 26 приведена зависимость прочности при хрупко.м илп пластическом разрушении для вольфрама, молибдена, тантала, ниобия и для сравнения — ниЕ<еля.  [c.516]

На практике часто оказывается более удобным другой способ получения полупроводящих сегнетоэлектриков — легированием. Для получения высокой электронной электропроводности BaTiOg ионы Ва или частично замещают донорными ионами с большей валентностью. Двухвалентный барий замещают трехвалентными ионами редкоземельных металлов (РЗМ) — лантана La , церия Се +, самария Sm и др. — или индия 1п +. Ионы замещают на пятивалентные ионы висмута Bi , сурьмы Sb , ниобия Nb , тантала Та или шестивалентные ионы вольфрама W , рения Re . Такого рода примеси играют роль доноров и приводят к электропроводности п-типа. Наоборот, замещение иона Ti на трехвалентные ионы (Fe , Nb +, РЗМ) создает акцепторные уровни и вызывает переход к дырочной электропроводности.  [c.225]

Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал-  [c.37]

Никель Ниобий Олово Осмий Палладий Платина Полоний Празеодим Протактиний Радий Рений Родий Ртуть Рубидий Рутений Самарий Свинец обыкновенный Свинец тори-евый Свинец урановый Селен Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Титан Торий Тулий Углерод Уран Фосфор Фтор Хлор Хром Цезий Церий Цинк Цирконий Эманация Эрбий  [c.27]

Соляная кислота ( Концентрирован ная (уд вес 1,19) То же Разбавленная Высокая Обычная Обычная Вольфрам, тантал, золото, иридий, родий, эбонит (до 66°), мягкая резина (до 110°), продо-рит (до 80°), горная порода—андезит, стекло, бакелет Те же и, кроме того, железокремнистый сплав (14—16% Si), свинец (медленно разрушается), керамика (трубопроводы, насосы), эбонитовая обкладка (например, железных труб) Те же, что и для концентрированной при высокой температуре й, кроме того, железокремнистый сплав (14—16% S ), твердый свинец (с добавкой сурьмы), алюминиевая брон , ыед-ноникелевые сплавы, кремнистая медь, никель, хромовое покрытие, молибденовое покрытие  [c.36]


Тантал и ниобий при комнатной температуре устойчивы против окисления. С повышением температуры до 400° а поверхности металлов появляются тонкие пленки окислов, а дальнейшее повышение температуры до 600—700° приводит к окислению ниобия и тантала с образованием высших окислов ЫЬгОз ТагОз. Тантал и ниобий обладают свойством растворять газы вадо род, азот и кислород. При комнатной температуре водород растворяется мало.  [c.309]

Электронная тепловая поляризация свойственна твердым диэлектрикам, имеющим определенного рода дефекты. Она играет существенную роль в таких технически важных диэлектриках, как рутил TiOi, перовскит aTiOs, подобных им сложных оксидах титана, циркония, ниобия, тантала, свинца, церия, висмута. Для этих поликристаллических веществ характерна высокая концентрация дефектов кристаллической структуры. Так, в стехиометрическом рутиле атомы титана имеют валентность, равную 4. При нестехиометрии, т. е. в данном случае при наличии вакансий кислорода, возникают слабосвязанные электроны и часть атомов титана становится трехвалентной. В результате теплового движения такие электроны хаотически перехо-  [c.261]

Коррозионная стойкость таитала связана с наличием на его поверхности тонкой сплошной пленки пятиокиси ТазОб. В целом ряде очень агрессивных сред металл пассивируется и становится почти таким же инертным, как золото или платина. В предложенной Пурбэ [5] таблице термодинамической устойчивости тантал следует за цинком и имеет номер 34 (номер 1 имеет золото). В то же время в таблице практической устойчивости тантал благодаря своей пассивной окисной пленке располагается непосредственно за родием (номер 1) и опережает золото (номер 4). Окисная пленка на тантале обладает хорошей адгезией и, по-вндимому, не является пористой. Согласно некоторым данным, на границе раздела окисел — металл образуется слой окисей, устойчивых до 425 С. При нагреве выше этой температуры устойчива только пятиокись, поэтому внутреннее напряжение (создаваемое металлом), возникающее в окисле в ходе его превращения, приводит к растрескиванию и отслаиванию защитной пленки.  [c.205]

Литий Натрий. Калий Рубидий. Цезий. . Медь. . Серебро. Золото Бериллий Магний. Кальций Стронций Барий, . Радий. . Цинк. . Кадмий Ртуть. . Бор. . . Алюминий Скандий. Иттрий Лантан. Актиний Галлий Индий Таллий Кремний Германий Олово. . Свинец Титан. . Цирконий Гафний. Ванадий. Ниобий. Тантал Сурьма. Висмут Хром. . Молибден Вольфрам Селен. . Теллур. Марганец Рений. . Железо. Кобальт. Никель Рутений. Родий. . Палладии Осмнй. . Иридий. Платина Торий. . Уран. . Лантан Церий  [c.293]

Элементы, образующие с железом твердые растворы, оказывают существенное влияние на характер протекания полиморфных превращений железа. Часть элементов расширяет область -твердых растворов на основе железа, т. е. повышает точку A и понижает точку Аз. К таким элементам относятся никель, марганец, кобальт, рубидий, родий, палладий, иридий, платина, осмий. Перечисленные элементы расширяют область твердых 7-растворов в тем большей степени, чем больше их содержание. Кроме того, часть элементов ограниченно расширяют область твердых у Растворо1в на основе железа. К таким элементам относятся углерод, азот, медь, тантал, цинк, золото, рений, бор. Наиболее энергично сужают область растворов бериллий, алюминий, кремний, фосфор, титая, ванадий, мышьяк, молибден, олово, сурьма, вольфрам, германий, Менее энергично действуют в этом -направлении цирконий, церий.  [c.101]


Смотреть страницы где упоминается термин Родий-тантал : [c.161]    [c.377]    [c.505]    [c.420]    [c.36]    [c.215]    [c.281]    [c.159]    [c.465]    [c.94]    [c.640]    [c.11]    [c.910]    [c.124]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Родий-тантал



ПОИСК



I рода

I рода II рода

Родан

Родиан

Родий

Родит

ТАНТА

Тантал



© 2025 Mash-xxl.info Реклама на сайте