Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и уравнение состояния реальных газов и паров

Б. Свойства и уравнение состояния реальных газов и паров  [c.33]

Уравнение состояния реального газа, отражающее все его свойства, как это будет показано ниже (см. 4.9, 4.10) весьма сложно, и непосредственное использование его при исследовании термодинамических процессов связано с большими трудностями. Процесс вычислений значительно облегчают ЭВМ, с помощью которых по сложным уравнениям вычисляют наиболее употребимые параметры состояния с относительно небольшими интервалами их значений. По результатам расчета составляют таблицы термодинамических свойств и строят термодинамические диаграммы, такие, как Гх-диаг-рамма и ей подобные. Таблицы и диаграммы широко используют в анализах и технических расчетах, например, процессов изменения состояния водяного пара (см. 11.6 и гл. XII) и других веществ.  [c.40]


Так как физические свойства различных веществ изучаются главным образом экспериментально, то надо посмотреть, подчиняются ли в действительности реальные газы и пары уравнению состояния (26). Надо сравнить экспериментальные результаты  [c.34]

В действительности адиабатный процесс с трением может быть осуществлен только в том случае, если рабочий агент имеет физические свойства реальных газов и паров. Поэтому, допуская такие процессы, нельзя применять формулы, полученные в термодинамике для идеального газа и, прежде всего, уравнение состояния в виде формулы (8). Как было выяснено выше ( 8, Б), в этом случае следует учесть коэффициент сжимаемости а = а р, t) и взять уравнение состояния в виде формулы (26).  [c.56]

Пар представляет собой промежуточное агрегатное состояние между жидкостью и газом. При высоких температурах и низких давлениях пар по своим свойствам приближается к идеальным газам. В паровых двигателях и теплообменных аппаратах пар используется при таких давлениях и температурах, что применять к нему законы и уравнения идеальных газов нельзя. В таких состояниях пар рассматривают как реальный газ, применяя для него соответствующее уравнение состояния (С1М. гл. I, 1). Наиболее точные уравнения состояния водяного пара имеют сложный вид и требуют выполнения громоздких вычислений. Поэтому при расчетах обычно применяют таблицы и диаграммы, построенные по опытным данным.  [c.44]

Эти исследования углубили и развили теорию реальных газов и позволили авторам вывести с учетом ассоциации молекул уравнение состояния реальных газов, уравнения теплоемкостей, внутренней энергии, энтропии и энтальпии, а также уравнения этих величин для водяного пара. На основании этих исследований Вукаловичем в 1940 г. были составлены первые отечественные таблицы термодинамических свойств водяного пара. Об этих таблицах было уже сказано в гл. 11. В 1955 г. таблицы, расширенные по давлений 300 ат и температур 700° С, были выпущены пятым изданием. В 1958 г. эти таблицы изданы были (изд. 6-е) на четырех языках. В этом издании таблицы были доведены до давлений 1 ООО ат и температур 1 000° С.  [c.494]

Теория дифференциальных уравнений позволяет вывести уравнение состояния реального газа на основании данных экспериментальных исследований его физических свойств. Этот метод в настоящее время ишроко применяется при составлении уравнения состояния перегретого пара. С помощью теории дифференциальных уравнений термодинамики возможно решение и обратной задачи составление по равненик) состояния расчетных уравнений для вычисления отдельных физических величин реального газа, например 1 , , 5. Этот метод также используется при составлении таблиц параметров водяногр пара.  [c.63]


Из физики известно, что реальные газы при определенных условиях могут быть сжижены или превращены в твёрдое состояние. Иначе говоря, реальные газы являются перегретыми парами определенных жидкостей. В технике широко применяют пары различных веществ воды, аммиака, хлористого метила и др. Наибольшее применение находит водяной пар, который является рабочим телом паровых машин, отопительных и других устройств. Чем ближе газ к переходу в жидкое состояние, тем больше он отклоняется от свойств идеального газа. Уравнение состояния реальных газов, в основу которого были положены представления о молекулярнокинетических свойствах и строении этих газов, было получено в 1873 г. Ван-дер-Ваальсом. Это уравнение имеет вид  [c.13]

По своим свойствам водяной пар, как и любой другой реальный газ, резко отличается от свойств идеального газа. Это отличие определяется пренсде всего тем, что в водяном паре нельзя пренебрегать силами межмолекулярного взаимодействия и объемом молекул. При тех состояниях, с которыми приходится иметь дело в теплотехнике, водяной пар может переходить в жидкую фазу (вода). Поэтому исследование термодинамических свойств его не может проводиться на основе тех аналитических зависимостей, которые были получены выше для тел, подчиняющихся уравнению состояния газа. Изучение свойств водяного пара проводится другими методами, в основе которых лежит установ.тение экспериментальных зависимостей между отдельными параметрами, характеризующими его состояние.  [c.166]

При очень больших давлениях (р > 1 атм) на переносе в газах сказывается силовое взаимодействие молекул. Особенности поведения молекул могут сказываться на переносе и при обычных давлениях, но при состояниях газов, близких к насьщенному пару, когда возможна ассоциация молекул. С понижением температуры и повышением давления по мере приближения состояния газа к насыщенному пару поведение газа все в большей мере отклоняется от свойств идеального газа. Характеристическое уравнение состояния идеального газа (уравнение Клапейрона — Менделеева) теряет силу, и для описания изменения состояния реального газа приходится привлекать иные уравнения (уравнение Ван дер Ваальса и др.).  [c.109]

С начала XX в. основной метод термодинамики с использованием опытных данных был применен при изучении термодинамических свойств реальных газов и главны.м образом водяного пара. Особенности реальных газов — действие молекулярных сил, объем молекул, их ассоциация и пр. — находят свое выражение не только в форме тер.мпческого уравнения состояния, но и во всех термодинамических величинах — внутренней энергии, энтальпии, энтропии и др., зависящих от состояния газа. Эта внутренняя зависимость между термодинамическими величинами позволяет по одной из них, изученной на основании опытов, сначала составить уравнение состояния, а зате.м аналитическим методом, используя основные дифференциальные уравнения термодинамики, определить значения всех других величин. Этот метод, осуществляемый в нескольких направлениях, имеет при.менение и в настояшее время прп изучении тер.моднна.миче-ских свойств водяного пара при высоких параметрах, а также термодинамических свойств паров других веществ.  [c.88]

В XX в. наиболее актуальной задачей становится разработка теории течения и истечения паров и газов в связи с широким развитием паровых турбин. Исследуются термодинамические свойства паров, жидкостей, твердых тел. Появляются десятки уравнений состояния вещества, изучаются фазовые равновесия и фазовые превращения, ведется исследование электрических и магнитных процессов лучистой энергии, химических реакций, термодинамики реальных тел. Указанные области исследований термодинамики неразрывно связаны с именами Ван-дер-Ваальса, Дюгема, Г. Кирхгофа, М. Планка, Л. Больцмана, В. Гиббса, Н. С. Курнакова, М. П. Вукаловича, И. И. Новикова, Н. И. Белоконя, В. А. Кириллина и других ученых.  [c.4]


В 2 уже отмечалось, что пар прелс.тявляе.т- собой некоторое промежуточное агрегатное состояние между жидкостью и газом. т. е. является реальным газом со сравнительно высокой критической температурой, находящимся недалеко от состояния насыщения. Чем выше температура и чем ниже давление пара, тем более он по своим свойствам приближается к идеальным газам. Поэтому, если имеется в виду водяной пар при низких давлениях и высокой температуре, например пар в продуктах сгорания топлива, то его можно рассматривать как идеальный газ, так как в этом случае силы сцепления между молекулами незначительны, а объем молекул мал по сравнению с объемом газа. Наоборот, в паровых двигателях или в нагревательных устройствах пар применяется обычно при таких давлениях и температурах, что применять к нему в этих состояниях законы идеальных газов и, в частности характеристическое уравнение идеального газа pv = RT, являлось бы неправильным, особенно при повышенных давлениях пара. Такой пар рассматривают как реальный газ и применяют для него соответствующее характеристическое уравнение. Распространенным и достаточно простым характеристическим уравнением для реальных газов является уравнение Ван-дер-Ваальса  [c.121]

Это уравнение, однако, не является вполне точным, так как не учитывает всех факторов, влияющих на его структуру. Советскими учеными профессорами М. П. Вукаловичем и И. И. Новиковым (Московский энергетический институт имени В. М. Молотова) было получено более точное уравнение состояния для перегретого пара, наиболее полно учитывающее физические свойства реальных газов (явления образования сложных молекул). Уравнение это имеет следующий вид  [c.122]

Сочинение Мерцалова явилось одним из первых русских сочинений, в котором этот метод исследования термодинамических свойств реальных газов (в данном случае перегретого пара) был изложен так систематически и обстоятельно. В этом большая заслуга проф. Мерцалова. Вычисление калорических функций перегретого пара было проведено в учебнике Мерцалова применительно к уравнению состояния Календара. Книга Мерцалова оказала большое влияние на повышение научного содержания учебников по термодинамике и ее втузовских курсов.  [c.232]

С основными положениями теории ассоциации реальных газов, методом составления уравнения состояния Вукаловича и Новикова и применением. его при исследовании термодинамических свойств реальных газов и водяного пара можно познакомиться по следующи.м статьям, напечатанным в Известиях отделения технических наук Академии иаук СССР М. П. Вукалович и И. И. Новиков Исследование термодинамических свойств реальных газов, 1939, № 5 М. П. Вукалович и И. И. Новиков, Теплоемкости реальных газов, 1939, № 6 М. П. В у к а л ов и ч и И. И. Новиков, Определение термодинамических параметров реальных газов и исследование водяного пара, воздуха и двухатомных газов, 1939, № 8.  [c.309]

Уравнение Казавчинского и его метод исследования термодинамических свойств реальных газов получили применение в ряде исследований, например О. И. Катхе, Исследование методов определения калорических свойств реальных газов по опытным термическим данным (1958) Я. 3. Казавчинский и О. И. Катхе, Уравнение состояния для водяного пара , Я. 3. К а а а в ч и н с к и й и П. М. К е с-с е л ь м а н, Анализ экспериментальных р, V, Т данных воды и водяного пара и графоаналитическое их согласование (1958) и др.  [c.311]

Чем больше степень перегрева, т.е. разница между действительной температурой пара и температурой насыщения, соответствующей его фактическому давлению, тем больше по своим термическим свойствам перегретый пар приближается к идеальному газу. Так, водяной пар, содержащийся в реальном (влажном) воздухе, с вполне приемлемой точностью следует уравнению состояния идеального raia. Это же относится к водяному пару, который образуется при сжигании топлив в камерах сгорания тепловых двигателей.  [c.77]


Смотреть страницы где упоминается термин Свойства и уравнение состояния реальных газов и паров : [c.306]    [c.310]    [c.2]    [c.22]    [c.240]    [c.306]    [c.306]    [c.336]   
Смотреть главы в:

Проектирование проточных частей судовых турбин  -> Свойства и уравнение состояния реальных газов и паров



ПОИСК



Газы уравнения состояния

Газы, свойства

Пары и реальные газы

Реальные газы

Реальный газ

Свойства газов

Свойства газов и паров

Свойства газов и паров Реальные газы

Свойства реальных газов

УРАВНЕНИЯ состояния реального газа

Уравнение реального газа

Уравнение состояния

Уравнение состояния газов

Уравнение состояния ли — iJpoapa — сдаистера Вторые вириальные коэффициенты для смесей Правила смешения Правила смешения для смесей жидкостей ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Содержание главы Основные термодинамические принципы Функции отклонения от идеального состояния Вычисление функций отклонения от идеального состояния Производные свойства Теплоемкость реальных газов Истинные критические точки смесей Теплоемкость жидкостей Парофазная фугитивность компонента смеси ДАВЛЕНИЯ ПАРОВ И ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ЧИСТЫХ ЖИДКОСТЕЙ



© 2025 Mash-xxl.info Реклама на сайте