Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики интенсивности закрутки потока

ХАРАКТЕРИСТИКИ ИНТЕНСИВНОСТИ ЗАКРУТКИ ПОТОКА  [c.13]

В предыдущей главе были рассмотрены общие закономерности развития закрученного потока в цилиндрическом канале длиной 150 диаметров. Такая длина была достаточной, чтобы проследить трансформацию характеристик закрученного течения вплоть до практического вырождения эффектов начальной закрутки и перехода к закономерностям осевого течения. В технических устройствах используются каналы различной относительной длины. В связи с этим представляет интерес зависимость структуры закрученного потока и других его характеристик от длины канала. Эта зависимость выявлена на основе экспериментального исследования распределения скоростей и давлений в каналах с длиной от 14 до 150 диаметров при различной интенсивности закрутки.  [c.59]


Приведенные примеры показывают важность поисков универсального критерия интенсивности закрутки, который мог бы служить параметром подобия при определении интегральных характеристик потоков, закрученных по разным законам и имеющих разные картины течения.  [c.46]

Как показывают экспериментальные исследования, интенсивная закрутка потока существенным образом сказывается на характеристиках поля течения перераспределении полной энтальпии, эжекционных свойствах струй, улучшении смесеподготовки  [c.3]

Изменение параметров завихрителя в достаточно широких пределах (v>h = 15...60°, п= -1...3) не изменяет качественной картины распределения локальных параметров закрученного потока (рис. 2.9). Характерные точки профилей скорости сохраняются, изменяются лишь его количественные характеристики, что связано с различной интенсивностью закрутки потока. Например, при прочих равных условиях = onst, х - onst) с  [c.42]

В предыдущем разделе было показано, что характер радиального распределения скоростей и давлений в произвольном сечении цилиндрического канала зависит от интенсивности закрутки потока в этом же сечении. Анализ обширных экспериментальных данных по структуре потока на основном участке течения, полученных при различных способах начальной закрутки, позволил выявить однозначную связь структуры потока с интегральным параметром закрутки Ф ,,, который, в свою очередь, однозначно связан с локальной характеристикой интенсивности закрутки tgVш  [c.43]

При расчете тепловых и гидродинамических процессов в аппаратах, где используется принцип закрзщенного движения, необходимо иметь сведения об основных характеристиках внутреннего закрученного потока, таких как — шаг закрутки, длина и относительная кривизна винтовой линии, предельное число витков винтовой линии и т. д. Имеющиеся в литературе результаты [67] относятся к внутренним потокам с постоянным по длине шагом закрутки (шнеки, скручешшю ленты) и не могут быть использованы для расчета каналов, в которых вследствие действия сил вязкости интенсивность закрутки потока уменьшается.  [c.183]

Одной из достаточно важных характеристик закрученных течений являются наличие и размеры в поперечном направлении зоны обратных токов — рециркуляционной зоны, которая возникает в приосевой зоне для струйных течений с достаточно высокой интенсивностью закрутки S > 0,4. При этом возросший радиальный фадиент давления обусловливает заметный рост поперечных размеров струи и снижение осевой составляющей скорости по сравнению с прямоточной струей, что совместно с при-осевым тороидальным вихревым потоком рециркуляционной зоны ифает достаточно важную роль при решении прикладных задач в процессах горения и стабилизации пламени в камерах сгорания.  [c.25]


В книге в система Тизированной форме представлены результат комплексного исследования гидродинамики, тепло- и мас-сообмена в осесимметричных каналах при местной закрутке потока. Предложены физически обоснованные методы расчета локальных и интегральных характеристик тепло-, массообмена и трения при разнообразных условиях, обладающие достаточной степенью универсальности. Приведены подробные результаты исследования полей скоростей и давлений, интенсивности пульсаций, корреляций, локального тепло- и массообмена в цилиндрических, сужающихся и расширяюгцихся каналах. Исследован широкий диапазон изменения граничных и геометрических условий однозначности (вд5гв через проницаемую стенку, частичная закрутка на входе, диафрагмирование выходного сечения и т. д.).  [c.3]

Недостаточно разработаны методические основы обобщения опытных данных по внутренним закрученным потокам. Использование геометрических характеристик завихрителя в качестве критерия интенсивности закрутки, как это делается в подавляющем большинстве исследований, не позволяет считать эмпиричес-  [c.7]

Характерная осомнность второго участка состоит в том, что структура потока, а следовательно, и интегральные характеристики на этом участке практически не зависят от вида завихрителя и определяются только интенсивностью закрутки, которая уменьшается по мере удаления рассматриваемого сечения от зшихрителя. Этот участок назовем основным. Он начинается и х = и заканчивается после вырождения закрутки при  [c.31]

В последние годы интенсивно изучаются закрученные потоки в осесимметричных каналах переменного сечения (сопла, диффузоры и т. д.). Впервые эта задача возникла при изучении вопроса о влиянии закрутки на характеристики сопел. Было обнаружено [65], что при определенных условиях закрутка потока может служить средством регулирования расхода газа через сверхзвуковое сопло. Поскольку расходные характеристики канала неразрывно связаны с локальными Ч1араметрами потока, то вопрос о распределении скоростей в соплах и каналах переменного сечения при течении с закруткой приобрел самостоятельное значение.  [c.106]

Как уже отмечалось, теплообменный аппарат с закрученным пучком витых труб позволяет обеспечить более равномерное поле температур в поперечном сечении пучка при азимутальной неравномерности подвода тепла благодаря дополнительному механизму переноса путем закрутки потока теплоносителя относительно оси пучка по сравнению с прямым пучком витых труб. При этом происходит интенсификация теплообмена в пучке и несколько повышаются гидравлические потери в межтрубном пространстве аппарата. Интенсивное выравнивание неравномерностей поля температур в поперечном сечении пучка повыщает надежность работы теплообменного аппарата, а интенсификация теплообмена улучшает его массо-габаритные характеристики. Для расчета полей температур в закрученных пучках требуется изучить процесс тепломассо-переноса и определить эффективный коэффициент турбулентной диффузии Лг, или безразмерный коэффициент/Г3, определяемый по (4.3) и используемый для замыкания системы дифференциальных уравнений, описывающих течение в пучке.  [c.110]

Важной характеристикой закрученных потоков является коэффициент расхода л, который характеризует как изменение расхода так и изменение импульса сопла из-за закрутки, поскольку удельный импульс весьма слабо зависит от интенсивности закрутки. Для получения универсальной зависимости л от интенсивности закрутки исследователями используются различные параметры, такие как интегральный параметр закрутки е, определенный в предыдущем разделе, параметр а , число Френкеля = ю1и) , число Росби  [c.208]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]


Исследование интенсивности пульсаций скорости, автокорреляционной функции и спектральной плотности позволило выявить физическую природу рштенсификации теплообмена в пучках витых труб. Оказалось, что дополнительная турбули-зация потока связана с закруткой и неравномерностью поля скорости в ядре потока. Так, сдвиг энергетического спектра турбулентности в область высоких частот (волновых чисел) по сравнению со спектром в круглой трубе, характеризующий возрастание диссипации энергии, наблюдается во всей области течения и для всех исследованных чисел Ее и Гг . При этом максимальные значения интенсивности турбулентности наблюдаются в следе за местами касания соседних труб, где энергетический спектр сдвинут в область высоких частот в большей мере. Увеличение доли энергосодержащих вихрей с ростом числа Рг (увеличением относительного шага закрутки труб S d) и уменьшение интенсивности турбулентности как за местами касания труб, так и в сквозных каналах, свидетельствует об уменьшении дополнительной турбулизации потока в пучке витых труб. Эти закономерности наблюдаются и при исследовании усредненных характеристик потока (коэффициентов теплоотдачи и гидравлического сопротивления) [39].  [c.82]


Смотреть страницы где упоминается термин Характеристики интенсивности закрутки потока : [c.15]    [c.175]    [c.45]    [c.302]    [c.176]    [c.106]   
Смотреть главы в:

Теплообмен, массообмен и гидродинамика закрученных потоков в осесимметричных каналах  -> Характеристики интенсивности закрутки потока



ПОИСК



Закрутка потока

Характеристика интенсивная



© 2025 Mash-xxl.info Реклама на сайте