Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение защитных свойств ингибиторов коррозии

В задачу контроля данного вида коррозии входят определение места, интенсивности и конкретных условий протекания коррозии проверка агрессивности мощных растворов, которая определяет ход развития стояночной коррозии после кислотно-химических промывок оценка защитных свойств консервантов. К ним следует отнести водные растворы ингибиторов пленкообразующего действия и восстановителей, защитные атмосферы.  [c.109]


При ускоренных испытаниях для определения защитного действия летучих ингибиторов в атмосферных условиях часто определяют потери массы металла. Хотя эти данные полезны для оценки свойств ингибиторов, но необходимо помнить, что для летучего ингибитора важна полная защита. Поэтому, если даже и будет наблюдаться заметное снижение коррозии, например на 50—70%, такой ингибитор все равно нельзя рекомендовать для защиты сложных изделий и приборов, поскольку уже незначительная коррозия может полностью вывести их из строя.  [c.232]

Защита таких изделий, например, в период хранения с помощью ингибиторов или масел также затруднена, так как эти средства не обладают универсальными защитными свойствами по отношению к различным металлам и даже при определенном сочетании металлов могут содействовать развитию коррозии одного из них.  [c.9]

Переход на консервацию оборудования ингибированными маслами и смазками (К-17, НГ-203, ПВК и др.) и ингибиторами атмосферной коррозии, имеющими более высокие защитные свойства и обеспечивающими длительную и надежную защиту поверхностей оборудования от коррозии при хранении, позволяет пересмотреть объемы, сроки осмотров и переконсервации оборудования. Сроки хранения оборудования при применении этих средств, могут быть увеличены, а объемы осмотров сокращены. Так, по опыту хранения оборудования применение новых средств защиты от коррозии обеспечивает надежное хранение оборудования при упаковке в деревянные ящики и другие виды упаковки без переконсервации на открытых площадках пять — восемь лет, а в хранилищах — шесть — девять лет. Ежегодные осмотры оборудования проводятся выборочно, т. е. вскрывается для осмотра определенный процент оборудования, хранящегося в одинаковых условиях и имеющего одинаковую консервацию. Ежегодно следует предусматривать осмотр 5% однотипного оборудования. В случае обнаружения коррозии на ответственных деталях (шейках валов турбин, редукторах, цилиндрах двигателей внутреннего сгорания и т. д.) должен быть проведен детальный осмотр всего оборудования, законсервированного тем же способом.  [c.119]

Разрушение оборудования из металлов и сплавов можно резко снизить усовершенствованием и разработкой методов защиты аппаратуры от коррозии. В настоящее время особое внимание уделяется разработке новых видов металлических и неметаллических покрытий, ингибиторов, усовершенствованию электрохимической защиты. Среди множества методов защиты металлов от коррозии самым распространенным является нанесение различных защитных металлических и неметаллических покрытий. Для защиты от коррозии черных металлов широко применяют цинковые покрытия, примерно 70% производства цинка расходуется для этих целей. Сложность и многообразие условий воздействия внешней среды, а также большое разнообразие применяемых конструкционных материалов постоянно требуют расширения номенклатуры гальванических покрытий металлами и сплавами с определенными заданными свойствами.  [c.8]


Разделы методических указаний, касающиеся определения защитных и технологических свойств в лабораторных условиях, методов стендовых и опытно-промышленных испытаний, призваны всесторонне исследовать ингибиторы коррозии и сводить к минимуму неудачи при промышленном их внедрении.  [c.4]

К сожалению, бо-лыпинство фирм, которые изготавливают ингибиторы коррозии, не сообщают их состав, поэтому подчас трудно составить себе представление о том, какие химические соединения или функциональные группы в сложных соединениях или смесях выполняют защитные функции. Знать же это совершенно необходимо для понимания механизма защиты металлов ингибиторами. В связи с этим рассмотрение пассивирующих и защитных свойств различных неорганических и органических соединений представляет большой интерес. Не менее важным является установление общих закономерностей защиты металлов от коррозии ингибиторами характер адсорбции, в.лияние ингибиторов на электрохимическую кинетику, связь между составом и структурой химических соединений и их защитными свойствами, влияние ингибиторов на поведение многоэлектродных систем, методы определения защитных свойств ингибиторов, возможность развития локальной коррозии в присутствии ингибиторов. Рассмотрение этих вопросов, несомненно, облегчит труд исследователей, занимающихся поисками новых ингибиторов, а также труд инженерных работников, использующих ингибиторы коррозии в технике.  [c.6]

Для образования сплошных по структуре пленок необходимо разрушение кристаллов мыла, для чего мыла сочетают с пластификаторами, загустителями других типов, маслорастворимыми ингибиторами коррозии, и, кроме того, на стадии изготовления композиции их обязательно подвергают мощной механо-хи-мической обработке, например гомогенизации [51, 117—122]. При нанесении толстых слоев (500 мкм и более) гомогенизированные пластичные смазки, содержащие 10—20% (масс.) мыл, обладают определенными защитными свойствами. Лучшие защитные свойства имеют Zn- и А1-смазки.  [c.152]

Результаты экспериментов по установлению требуемой частоты ввода ИКО в систему охлаждения в зависимости от времени сохранения защитных свойств ингибиторной пленки на меди после ввода ИКО приведены на рис. 11.17 (сплошная кривая). После выдержки медных образцов в аэрированной воде при 80 °С и определения резистометрическим методом скорости коррозии меди — 0,019 г/(м -ч) — в воду были введены 0,005 г/л МЭА и 0,01 г/л БТА (стрелка 1), что привело к постепенному уменьшению скорости коррозии до постоянного значения 0,0011 г/(м -ч). Спустя 137 ч раствор с ингибиторами был заменен чистой водой (стрелка 2). В течение последующих 600 ч испытаний в чистой воде скорость коррозии меди оставалась постоянной и равной 0,001 г/(м -ч). Полученный результат показывает, что сформированная защитная пленка сохраняет защитные свойства в течение длительного времени даже при полном удалении ингибиторов из раствора [4].  [c.218]

Защитные свойства молибдата натрия в 0,1 н. Na2S04 хорошо иллюстрирует рис. 5,14. Малые концентрации до определенного критического значения увеличивают интенсивность коррозии, большие ее уменьшают до весьма малых значений. При 5-10-2 моль/л коррозия полностью прекращается. iB более разбавленных растворах (30 мг/л Na l + 70 мг/л N32804) требуются совсем малые концентрации ингибитора (200 мг/л), чтобы полностью подавить коррозионный процесс. С увеличением концентрации хлорида (200 мг/л) защитная концентрация ингибитора возрастает до 1000—2000 мг/л. Если сравнивать защитные концентрации различных ингибиторов, то для молибдата они наименьшие.  [c.169]

Исследования Бутлера [104] показали, что с помощью гексаметафосфата натрия и солей кальция можно приостановить и начавшуюся коррозию (рис. 5,34). При этом сформировавшаяся на поверхности стали пленка сохраняет свои защитные свойства в течение определенного времени (14 сут) и в том случае, когда образец переносится в неингибированный электролит. Это означает, что фосфаты обеспечивают эффект последействия, т. е. нет необходимости в постоянной подаче ингибитора. Опыты (Г, 2, 3, рис. 5,34) были поставлены таким образом, что из 27 сут образцы находились 13 сут в электролите с ингибитором и 14 сут в электролите без ингибитора.  [c.193]


Защита охладительных систем двигателей внутреннего сгорания (дизели, автомобили) сопряжена со значительными трудностями по следующим причинам системы содержат ряд разнородных в электрохимическом отношении металлов и сплавов (сталь, цинк, латунь, припой, чугун, алюминий) имеют много щелевых зазоров и застойных мест работают при высоких температурах и подвергаются часто эрозионному воздействию и кавитации. Все эти факторы сильно затрудняют подбор ингибиторов. Не представляет труда, как было показано выше, защитить от коррозии сталь или чугун, а также биметаллические системы сталь — медь, однако при наличии в системе алюминия, эксплуатация которого возможна лишь в узком интервале pH, применение щелочных реагентов, хорошо защищающих черные металлы, исключается. Наличие латуни также вносит свои трудности, поскольку медь со многими органическими соединениями, в особенности с аминами, образует легко растворимые комплексные соединения. Особенно трудно защитить от коррозии припой (Pb/Sn — 70/30) так, нитрит натрия, который является хорошим ингибитором для стали, разрушает припой, т. е. самостоятельно применяться не может. Положение осложняется еще и тем, что наличие в системе разнородных в электрохимическом отношении металлов приводит к катодной поляризации одних металлов и анодной поляризации других. Поэтому при определенном общем потенциале, который устанавливается в "системе или на отдельных электродах, некоторые ингибиторы, которые обычно в присутствии одного металла не восстанавливаются, могут восстанавливаться, теряя свои защитные свойства. Этот процесс, например для хроматов, усиливается при наличии в воде органических соединений (уплотнителей органического происхож-  [c.269]

Принципиальное различие между водо- и маслорастворимыми ингибиторами коррозии, сказывающееся на механизме их действия и на характере защитных свойств, заключается в том, что,маслорастворимые ингибиторы, в отличие от водорастворимых, не диссоциируют в воде, не образуют ионных растворов. Поэтому, если нитрит натрия и нитритдициклогексиламин имеют много общего в механизме действия (оба обладают пассивирующими свойствами и усиливают коррозию некоторых цветных металлов), то маслорастворимые ингибиторы коррозии, например нитрованные масла, резко отличаются от них. Маслорастворимые ингибиторы коррозии защищают любые металлы— черные и цветные. Большим преимуществом таких ингибиторов является также полная растворимость их в любых нефтепродуктах. Кроме того, многие неорганич кие и органические водорастворимые ингибиторы коррозии защищают металл только при определенной концентрации и в определенной (щелочной) среде. При концентрации ниже требуемой они не только не защищают, но усиливают коррозию металла. Поэтому их называют опасными [42].  [c.75]

Мейзон и Шилмоллер [31] нашли, что пленкообразующие амины устраняют коррозию углеродистой стали в башне и конденсаторе верхнего отгона. В этом случае необходимо соблюдение вполне определенных условий, так как турбулентность, высокие скорости потоков и низкие значения pH препятствуют образованию защитных пленок. При несоблюдении этих условий возможны случаи, когда ингибиторы увеличивают скорость коррозии в 2—3 раза. Увеличение скорости коррозии можно отнести за счет очищающего действия ингибитора, который удаляет отложения, обладающие хотя и недостаточными, но все же некоторыми защитными свойствами. Например, ингибиторы, которые обеспечивают хорошую защиту в концентрации 8—12 мг/л, стимулируют коррозию при концентрации 1—2 жг/л.  [c.275]

В связи с тем, что суммарный коррозионно-механический износ является результатом многих процессов, а также с тем, что внимание специалистов было сосредоточено главным образом на химической коррозии наименее стойких деталей из цветных металлов или сплавов (например, вкладышей подшипников коленчатого вала), опасность и значение электрохимической коррозии долгое время недооценивались. Это помимо всего прочего привело к путанице в терминах и определениях, принятых в научно-тех1нической литературе по коррозии и защите металлов и шо нефтепродуктам. В табл. 4 приведены основные понятия и термины применительно к проблеме нефтепродукты и коррозия по их состоянию на се-Г0ДНЯШ1НИЙ день. Как видно, несмотря на сопутствующие процессы необходимо четко различать коррозионные свойства нефтепродуктов (их коррозионную агрессивность или, наоборот, противокоррозионные свойства), связанные в основ1Ном с химическими процессами и зависящие от способности самих нефтепродуктов вызывать или предотвращать химическую коррозию металла, и их защитные свойства, т. е. способность защищать металл от электрохимической коррозии в присутствии электролита. В соответствии с этим необходимо, в частности, различать противокоррозионные присадки к нефтепродуктам, добавляемые для улучшения их коррозионных свойств, и маслорастворимые ингибиторы коррозии, улучшающие защитные свойства нефтепродуктов. Как показано  [c.15]

Для оценки поверхностных свойств маслорастворимых ингибиторов коррозии, защитных масел и ингибированных тонкопленочных покрытий на сухих твердых поверхностях мы использовали следующие методики [57] определение поверхностного натяжения на границе с воздухом стандартными методами определение краевых углов смачивания (Ст. 10, шлифовка, 4 с, 5 мин) и максимального диаметра растекаемости капли продукта по стали, меди, бронзе и другим металлам (в мм, 2 ч) определение высоты подъема продукта по микрозазору шириной 18—20 мкм между двумя пластинками сталь — сталь (в мм за 20 мин при 20 °С и при высоких температурах) определение способности продукта пропитывать стандартный порошок окиси железа высота столба пропитки (в мм за 5 мин, 10 мин, 2 ч при 20 °С и в некоторых случаях — при повышенных температурах) капиллярная прспикающая способность— по полоске сухой фильтровальной бумаги (в мм за  [c.27]



Смотреть страницы где упоминается термин Определение защитных свойств ингибиторов коррозии : [c.64]    [c.4]    [c.87]    [c.2]    [c.140]    [c.159]   
Смотреть главы в:

Техника и методы коррозионных испытаний  -> Определение защитных свойств ингибиторов коррозии



ПОИСК



Защитные свойства (ФС

Защитные свойства ингибиторов

Ингибитор

Ингибитор коррозии

Ингибиторы свойства

Коррозия определение

Коррозия свойства



© 2025 Mash-xxl.info Реклама на сайте