Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ионная и ионно-электронная эмиссия

ПЭ используется в некоторых вакуумных электронных приборах, в полевой электронной и ионной микроскопии, взрывная электронная эмиссия — в сильноточных ускорителях электронов и в импульсных источниках рентгеновского излучения высокой интенсивности [30].  [c.588]

ИОННАЯ И ИОННО-ЭЛЕКТРОННАЯ ЭМИССИЯ  [c.590]

Разрушение ионных кристаллов в узле решетки, соответствующем вакансии положительного иона (положительная дырка ) Электронная эмиссия при разрушении твердых тел, нарушении контакта между фазами с различной электронной плотностью, а также при кавитации и трении  [c.350]


Из отрицательного электрода начинают вылетать электроны, которые, сталкиваясь с молекулами и атомами воздуха, выбивают из них электроны и образуют, таким образом, ионы и свободные электроны воздуха. Воздух между электродами становится проводником электричества. Отрицательные ионы и свободные электроны ударяются об анод (положительный электрод), а положительные ионы —о катод (отрицательный электрод). В результате сталкивания их кинетическая энергия превращается в тепловую и поддерживает высокую температуру катода и анода. Эмиссия электронов продолжается до тех пор, пока горит дуга.  [c.49]

Катодная область. Процессы, протекающие в области катодного падения напряжения, играют важную роль в сварочных процессах. Область катодного падения напряжения является источником первичных электронов, которые поддерживают газы дугового промежутка в возбужденном ионизированном состоянии и переносят на себе в силу большой подвижности основную массу заряда. Отрыв электронов с поверхности катода вызывается в первую очередь термоэлектронной и авто-электронной эмиссией. Энергия, расходуемая на вырыв электронов с поверхности катода и наплавление металла, в некоторой степени возмещается энергией из столба дуги за счет потока положительно заряженных ионов, отдающих на поверхности катода свою энергию ионизации. Процессы, происходящие в области катодного падения напряжения, можно представить по следующей схеме  [c.40]

Установка, в которой используется электронно-лучевая пушка с полым катодом (рис. 3), может работать в двух режимах с горячим катодом и холодным катодом. В первом случае внутренние стенки полого катода (см. п. 4 гл. XI) разогреваются за счет ионной бомбардировки. Основные причины электронной эмиссии действие электрического поля, термоэлектронная эмиссия и вторичная электронная эмиссия под действием ионной бомбардировки.  [c.13]

Н, eui>2Ф, поэтому для них выравнивание вероятно. Коэффициент выхода электронов эмиссии на один ион трудно определить. Он зависит от ряда факторов, в том числе от энергии ионов, и меняется в широких пределах.  [c.67]

Газосветные лампы. Газосветная лампа состоит из стеклянного баллона, заполненного люминесцирующим газом. Внутри баллона (на его концах) расположены электроды. Под действием приложенного электростатического поля ионы и электроны, образующиеся тем или иным путем (например, за счет термоэлектронной эмиссии), приводятся внутри трубки в быстрое движение и, соударяясь с атомами газа, вызывают их возбуждение. Возбужденные атомы газа, переходя в основное состояние, высвечиваются.  [c.377]


Механизм разряда в полом катоде изучен еще недостаточно. В эмиссии электронов с поверхности полого катода наряду с ионной бомбардировкой большое значение имеет фотоэффект под действием квантов УФ-излучения, испускаемого возбужденными атомами и ионами.  [c.73]

ЭЛЕКТРОННАЯ И ИОННАЯ ЭМИССИЯ  [c.567]

Тело, испускающее электроны или ионы, называется эмиттером. Для наблюдения и использования электронной или ионной эмиссии необходимо создать у поверхности эмиттера электрическое поле, отсасывающее эмитированные частицы. Обычно для достижения эмиссионным током насыщения достаточно приложить небольшое поле (десятки или сотни вольт на сантиметр). В случае полевой эмиссии внешнее электрическое поле превращает потенциальный порог, существующий на границе тела и препятствующий выходу электронов, в барьер конечной ширины и уменьшает его высоту, вследствие чего становится возможным квантовомеханическое туннелирование электронов сквозь барьер. При этом энергия электрического поля затрачивается только на ускорение эмитированных электронов. Для возникновения полевой эмиссии необходимо приложить к телу сильное электрическое поле (I 10 В/см), при этом плотность тока может достигнуть 10 А/см . При еще больших импульсных полях локальные участки эмиттера (выступы, заострения) сильно разогреваются (чаще всего током полевой эмиссии) и взрываются. Часть вещества эмиттера переходит из конденсированной фазы в плотную плазму. Этот процесс сопровождается испусканием интенсивного электронного потока — возникает взрывная электронная эмиссия. Монографии и обзоры по эмиссионной электронике и различным видам эмиттеров приведены в [1—4,  [c.567]

Ртутный выпрямитель представляет собой ионный прибор, основанный на самостоятельном дуговом разряде в парах ртути. В качестве катода в нем используется жидкая ртуть, имеющая следующие преимущества перед твердыми катодами а) неограниченную электронную эмиссию б) неограниченную долговечность, так как испаряющаяся с катода ртуть конденсируется на стенках сосуда и стекает обратно к катоду.  [c.367]

Как известно, до настоящего времени природа приэлектродных потерь Fnp (5.35) изучена слабо. По-видимому, к факторам, влияющим на величину Уцр, относятся столкновения электронов с нейтральными частицами и ионами в тепловом пограничном слое с пониженной температурой, эмиссия с электродов, а также явления ионизации и рекомбинации в электрическом пограничном слое (у катода) В современных расчетах суммарную величину Fnp обычно принимают (на основании экспериментальных данных) в пределах 30—100 в в зависимости от типа электродов (холодные, горячие), размеров канала и т. д.  [c.116]

Ф. э. в эл.-вакуумных и ионных приборах связаны гл. обр. со случайным характером электронной эмиссии с катода (дробовой шум). Интенсивность дробовых Ф. э. практически постоянна для /<10 Гц. Она зависит от присутствия остаточных ионов и величины пространств, заряда. Дополнит, источники Ф. э. в этих приборах—вторична.ч электронная эмиссия с анода и сеток электронных ламп, динодов фотоэлектронных умножителей и т. п., а также случайное перераспределение тока между электродами. Наблюдаются также медленные Ф. э., связанные с разл. процессами на катоде. В газоразрядных приборах низкого давления Ф, э. возникают из-за теплового движения электронов.  [c.328]

Для неблагородных металлов физическая адсорбция быстро переходит в химическую. Химическую адсорбцию отличают от физической по ряду признаков. Основной из них — это большой тепловой эффект (85 420 кДж/моль), величина которого, соизмеримая с тепловым эффектом образования окислов, явно указывает на ионный характер связи. Наряду с этим имеются косвенные доказательства химической связи, проявляющиеся в заметном изменении ряда физических свойств в уменьшении электронной эмиссии, увеличении контактного потенциала, повышении порога фотоэлектрической чувствительности и др.  [c.10]

Электрическая дуга (рис. 3.13) представляет собой установившийся свободный электрический разряд в ионизированной смеси газов и паров веществ, входящих в состав электрода, электродного покрытия и флюса. Электропроводность межэлектродного промежутка обусловлена движением заряженных частиц - электронов и ионов. Заряженные частицы в дуговом промежутке возникают за счет эмиссии (испускания) электронов с поверхности электродов и ионизации газа. Непременным условием электрического дугового разряда является генерация заряженных частиц в количестве, достаточном для существования дуги.  [c.233]


Электрическая дуга является разрядом в газах, при котором электрический ток проходит через газовый промежуток под воздействием электрического поля при наличии в нем заряженных частиц — электронов и ионов. Они возникают в этом пространстве при эмиссии (испускании) электронов с поверхности отрицательного электрода (катода) и ионизации газов.  [c.15]

Механизм, который предложили Кабрера и Мотт (J949 г.), исходит и из существования на металле образовавшейся в процессе хемосорбции кислорода пленки, в которой ионы и электроны движутся независимо друг от друга. При низких температурах диффузия ионов через пленку затруднена, в то время как электроны могут проходить через тонкий еще слой окисла либо благодаря термоионной эмиссии, либо, что более вероятно, вследствие туннельного эффекта (квантово-механического процесса, при котором для электронов с максимальной энергией, меньшей, чем это требуется для преодоления барьера, все же характерна конечная вероятность того, что они преодолеют этот барьер, т. е. пленку), обусловливающего высокую проводимость окисной пленки при низких температурах. При этом на поверхности раздела металл— окисел образуются катионы, и на поверхности раздела окисел— газ—анионы кислорода (или другого окислителя). Таким образом, внутри окисной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т. е. более заторможенным, процессом.  [c.48]

Электронная и ионная эмиссия — испускание электронов или ионов телами под влиянием внешних воздействий нагревания, потока фотонов, электронов, ионов или сильного электрического поля. В зависимости от характера внешнего воздействия различают соответственно термоэлектронную, термоионную, фотоэлектронную, вторичную электронную и вторичную ионную, электронноионную, ионно-электронную и полевую (иначе — туннельную или автоэлектронную) эмиссии. Во всех видах эмиссии. кроме полевой, роль внешних воздействий состоит в увеличении энергии части электронов или ионов тела до значения, позволяющего преодолеть действие сил. которые связывают их с телом, и выйти в вакуум или в другую среду. При ионной эмиссии эмитироваться могут как положительные, так и отрицательные ионы.  [c.567]

Разряд с холодным катодом. Очень часто в напылительных установках используется холодный катод, выполняющий одновременно и роль распыляемой мишени (рис. 2.5). Дело в том, что при ионной бомбардировке из металла змиттируются не только ионы, но и электроны вследствие вторичной ионно-электронной эмиссии. Эта эмиссия сильно облегчается благодаря тому, что необходимая для нее энергия поставляется не столько за счет кинетической энергии иона, падающего на катод, сколько за счет энергии, выделяющейся при его нейтрализации в металле. Происходит следующая картина при соударении иона с поверхностью металла из металла выходят два электрона один из них присоединяется к иону, второй эмит-тируется. При этом если энергия ионизации бомбардирующей частицы превышает работу выхода электрона из металла в два и более раза, то эмиссию электронов могут вызывать даже самые медленные ионы. Для примера укажем, что энергия ионизации аргона равна 15,7 эВ, а термодинамическая работа выхода электрона равна 4,1 эВ для меди, 3 эВ для алюминия и т. д. Поэтому коэффициенты ионно-электронной эмиссии 7, т. е. число электронов, эмиттируемых  [c.66]

При построении моделей шумовых процессов, сопровождающих работу автоэлектронного катода, необходимо выделить роль и условия возникновения физических явлений, приводящих к флуктуациям тока эмиссии. К таким явлениям можно отнести электронные процессы в объеме и на поверхности материала катода (флуктуации проводимости), адсорбционно-миграционные процессы (флуктуации работы выхода электронов), а также разрушение эмиттирующей поверхности пондеромоторными силами и ионной бомбардировкой (флуктуации форм-фактора и площади эмиттирующей поверхности). Флуктуации проводимости материала катода слишком малы, чтобы вызвать какие-либо заметные изменения тока эмиссии. Сопротивление одиночного фибрильного волокна, используемого в качестве автокатодов, не превышает единиц килоом, а у других материалов еще меньше. При токе 1 мА падение напряжения на фибрильном волокне (от держателя до эмиттирующей поверхности) не превышает 1 В, а флуктуации его значительно меньше (по крайней мере, на 3 порядка). Следовательно, вызываемые ими флуктуации тока катод—анод не способны привести к наблюдаемой стабильности тока.  [c.230]

ИОННЫЕ ПРИБОРЫ (газоразрядные приборы) — приборы, наполненные к.-л. инертным газом (Не, Ne, Аг, Кг, Хе), парами ртути или водородом, действие к-рых основано на прохождении электрич. тока через газоразрядную плазму, образующуюся в меж-электродном иространстве. Давление газов в И. п. составляет 10 -f-100) мм рт. ст. По тину газового разряда, зажигающегося в приборе и определяемого природой электронной эмиссии из катода, родом газа и его плотностью, питанием разряда, различают И. п, несамосто-ят. дугового разряда, самоетоят. дугового, тлеющего, искрового и коронного разрядов.  [c.203]

П. и. используется в ионных источниках, детекторах молекулярных и атомных пучков (включая селективные детекторы и газоанализаторы органич. соединений), для компенсации объёмного заряда электронов в разл. устройствах. П. и, позволяет исследовать мн, физи-ко-хим. процессы на поверхности твёрдого тела, а также свойства частиц и поверхности твёрдого тела. Применяются свыше 30 поверхностно-ионизационных методов для определений К и 5 атомов, молекул и радикалов кинетич. характеристик термо десорбции этих частиц в виде ионов и в нейтральном состоянии для изучения реакций на поверхности твёрдого тела фазовых переходов в адсорбированных слоях для определения активности катализаторов в гетерогенных реакциях диссоциации и др. Эти методы пригодны при вы-соких Т и имеют большую чувствительность, если а 1, Существуют комбинированные методы, в к-рых П. и. сочетается с термоэлектронной эмиссией, С элект-рОЕЕО-стимулированной десорбцией и др.  [c.646]


Важную группу II. я. составляют электроповерхност-ные явления поверхностная проводимость, поверхностный электрич. потенциал, электронная эмиссия и др. Все они связаны с образованием на межфазной границе двойного электрического слоя в результате эмиссии или специфнч. адсорбции ионов, а также ориентации диполей в поле поверхностных сил (в случае полярных жидкостей в этом процессе могут играть существенную роль диполь-квадрупольные взаимодействия).  [c.653]

Классификация газовых разрядов. Среди стационарных самостоятельных разрядов в пост, поле наиб, важные и распространённые—тлеющий и дуговой. Они различаются механизмами катодной эмиссии, обеспечивающей возможность протекания пост, тока, поскольку осн. носителями тока являются электроны. В тлеющем и тёмном (таунсендовском) разрядах катод холодный. Электроны вырываются из него положит, ионами (и фотонами). В дуговом разряде катод разогревается сильным током и происходит термоэлектронная эмиссия. В резко неоднородных полях, усиленных около острий, проводов линий электропередачи, возникает коронный разряд, самостоятельный и слаботочный. Среди быстротечных сильноточных разрядов особенно важен искровой разряд. Он возникает обычно при 1 атм, d> 1—5 см и достаточно высоком напряжении, превышающем напряжение зажигания короны, если поле сильно неоднородное. Искровой пробой газа происходит в результате возникновения и быстрого развития тонкого плазменного какала от одного электрода к другому затем получается как бы короткое замыкание цепи высокопроводящим искровым каналом. Одна из форм искрового разряда—молния. В коронном и искровом разрядах катодная эмиссия особой роли не играет.  [c.510]

Помимо перечисленных элементарных процессов, идущих в объеме плазмы, при анализе работы лазерных систем необходимо учитывать целый ряд поверхностных явлений, имеющих место на электродах и ограничивающих плазму поверхностях. Прежде всего к ним следует отнести эмиссию электронов под действием положительных ионов (у-процесс), фотоэффект, термо- и автоэлект-ронную эмиссию электронов на катоде и, наконец, нейтрализацию положительных и отрицательных ионов, а также тушение частиц на ограничивающих плазму поверхностях.  [c.78]

Важною фуппу составляют электрические поверхностные явления поверхностная проводимость, поверхностный электрический потенциал, электронная эмиссия и др. Все они связаны с образованием на межфазной фанице двойного электрического слоя в результате эмиссии электронов или спегщфической эмиссии ионов, а также ориентации диполей в поле поверхностных сил,  [c.60]

Электрическая дуга — один из видов электрического разряда, при котором ток проходит через ионизированные газы, пары металлов. При кратковременном сближении электродов с шихтой или друг с другом возникает короткое замыкание. Идет ток большой силы. Концы электродов раскаляются добела. При раздвигании электродов между ними возникает электрическая дуга. С раскаленного катода происходит термоэлектронная эмиссия электронов, которые, направляясь к аноду, сталкиваются с нейтральными молекулами газа и ионизируют их. Отрицательные ионы направляются к аноду, положительные к катоду. Пространство между анодом и катодом становится ионизированным, токопроводящим. Бомбардировка анода электронами и ионами вызывает сильный его разогрев. Температура анода может достигать 4000 °С. Дуга может гореть на постоянном и на переменном токе. Электродуговые печи работают на переменном токе. В последнее время в ФРГ построена элек-тродуговая печь на постоянном токе.  [c.177]

Длина катодной области очень мала и сопоставима с длиной свободного пробега иона / = 10 ... 10 см. Катод эмитирует электроны как за счет нагрева его поверхности (термоэлектронная эмиссия), так и в результате создания у его поверхности электрического поля высокой напряженности (автоэлектронная эмиссия). Кроме того, электроны и ионы образуются в самой катодной зоне благодаря термической ионизации нейтрального газа. У поверхности катода создается объемный положительный заряд. Катодное падение напряжения (Укат 5...25 В на небольшой длине катодной зоны обусловливает значение градиента потенциала в этой зоне 10 В/см.  [c.233]


Смотреть страницы где упоминается термин Ионная и ионно-электронная эмиссия : [c.61]    [c.450]    [c.543]    [c.95]    [c.590]    [c.298]    [c.238]    [c.199]    [c.201]    [c.201]    [c.201]    [c.207]    [c.246]    [c.54]    [c.400]    [c.615]    [c.236]    [c.102]    [c.103]    [c.93]   
Смотреть главы в:

Физические величины. Справочник  -> Ионная и ионно-электронная эмиссия



ПОИСК



Иониты

Ионов

По ионная

ЭЛЕКТРОННАЯ И ИОННАЯ ЭМИССИЯ. Т. М. Лифшиц, А. Л. Мусатов

Эмиссия

Эмиссия ионная

Эмиссия электронная

Эмиссия электронов



© 2025 Mash-xxl.info Реклама на сайте