Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Надрез как условие коррозионного

Некоторый разброс результатов по коррозионному растрескиванию наблюдается всегда, поэтому для его уменьшения необходимо тщательно контролировать условия проведения испытаний. Однако незначительные изменения состава, условий получения сплавов от плавки к плавке, а также их термообработки всегда приводят к некоторой некорректности результатов. Более того, результаты испытаний сплавов, в которых проявляется зависимость от скорости нагружения, могут несколько различаться в зависимости от условий испытания (образцы ДКБ или образцы с односторонним надрезом). Рассмотрение аспектов статистики результатов испытаний не входит в тему данной главы.  [c.313]


При комнатной температуре надрезы уменьшают предел усталости примерно в 2 раза. Однако для большинства сталей при условии отсутствия прогрессирующего охрупчивания чувствительность к концентрации напряжений с повышением температуры уменьшается. Сильное влияние оказывает поверхностное окисление и обезуглероживание стали, снижающие предел усталости. Необходимо обратить внимание на следующие характерные испытания стальные образцы, подвергаемые при комнатной температуре действию струи воды, снижают предел усталости на 16—60% это объясняется развитием местных коррозионных повреждений, которые действуют подобно надрезу, как концентраторы напряжений [12,53].  [c.443]

Примечание. X — образцы не изменяются, о — следы ржавчины или образование пузырей на образцах. Адгезия покрывающего слоя оценивалась по методу пересекающихся надрезов (число надрезов остающихся после испытания) после проведения испытаний в течение 6 мес в атмосферных условиях для грунтовки с высокой коррозионной стойкостью или после 7 сут в сухой комнатной атмосфере для травящих грунтовок.  [c.105]

Испытания с использованием образцов с надрезом и треш,иной. Для определения склонности к коррозионному растрескиванию высокопрочных материалов в лабораторных исследованиях успешно применяют метод, основанный на принципе линейной механики разрушений [24, 25]. Этот метод позволяет определить критический размер дефекта, представляющего опасность при эксплуатации -реальной конструкции в условиях коррозий под напряжением.  [c.69]

Сплавы титана не чувствительны к воздействию коррозионных сред в условиях переменных нагрузок. Пассивность титана обусловлена наличием на его поверхности защитной окисной пленки, не имеющей пор. Существует мнение, что в окисных пленках возникают остаточные напряжения сжатия. По некоторым данным, в растворах хлоридов при наличии острого концентратора типа трещины или острого надреза невосприимчивость титановых сплавов к воздействию среды исчезает. Долговечность образцов с трещиной в морской воде ниже долговечности на воздухе.  [c.159]

В литературе имеется много сведений об использовании при лабораторных исследованиях коррозионного растрескивания не гладких образцов, а образцов с надрезом или с предварительно нанесенной трещиной. Поступают таким образом с целью повышения воспроизводимости результатов, а также потому, что гладкие образцы при прочих равных условиях не разрушаются. Кроме того, при использовании образцов с надрезом или трещиной проще и легче определять некоторые параметры, в частности скорость роста трещины. Однако развитие в последнее десятилетне линейной механики разрушения (см. раздел 5.9) при-  [c.317]


Для локализации напряжений в оболочке создавали искусственный надрез или местное утонение оболочки. К другой заглушке приваривали звукопровод длиной 0,5... 1 м диаметром 2...3 мм из циркониевой проволоки. При испытаниях оболочку помещали в печь, задавая температуру, близкую к рабочей температуре в реакторе. Совместное действие температуры, внутреннего давления газа и паров йода имитировали условия возникновения коррозии под напряжением в реакторе, а регистрируемые АЭ-сигналы позволяли проследить динамику развития коррозионного растрескивания.  [c.252]

В установках для подготовки нефти используют оборудование различного назначения теплообменники, насосы, дегидраторы, резервуары и др. Среди них наиболее металлоемкие и весьма ответственные резервуары, предназначенные для предварительного отстоя обводненной нефти, сбора и отстоя сточной воды, сбора и хранения товарной нефти и нефтепродуктов. Исходя из условий эксплуатации резервуаров, к конструкционному материалу предъявляют сложный комплекс требований он должен обладать высокой прочностью при достаточно высокой пластичности и вязкости, минимальной склонностью к хрупкому разрушению, хладоломкости и старению, низкой чувствительностью к надрезам, хорошей свариваемостью, высокой коррозионной стойкостью к воздействию атмосферы, грунтовых вод, хранимых нефтей и нефтепродуктов. Основной конструкционный материал для изготовления резервуаров — сталь различных марок. В последние годы получают все большее распространение алюминиевые сплавы для изготовления отдельных узлов резервуаров — крыш и верхних поясов вертикальных цилиндрических резервуаров.  [c.164]

Другой важный фактор, в значительной степени определяющий чувствительность к коррозионной среде,—наличие на поверхности образцов концентраторов напряжений. В вершинах концентраторов напряжений при малоцикловом нагружении создаются условия для образования глубоких трещин с малым раскрытием, в которых происходит подкисление внутрищелевого раствора и его глубокая деаэрация. Указанные условия препятствуют или затрудняют процесс репассивации, в результате чего процесс коррозионного разрушения активизируется. На рис. 71 показано влияние концентрации напряжений на малоцикловую долговечность сплава ВТ5-1 при Я = 0 в коррозионной среде ( ном 0,9о. ) образцов с радиусом надреза 0,01 0,1 0,5 1,2 и 6,0 мм. Во всех случаях отношение диаметра образца в надрезе г/ к диаметру вне надреза оставалось постоянным и равнялось 0,707 при г/=9 мм. Указанным радиусам соответствовал теоретический коэффициент концентрации напряжений, соответственно равный 13,5 5,2 4,2 2,8 и 2,0. По оси абсцисс на рис 71 отложена долговечность соответствующая точке пересечения кривой усталости надрезанных образцов с кривой усталости гладких образцов. Как видно из рис. 71, даже при проведении испытаний чувствительного к коррозионной среде сплава ВТ5-1 при наличии концентра-  [c.116]

В работе [77] с помощью устройства рычажного типа были исследованы критические размеры дефектов для ряда титановых сплавов в 3,5 %-ном растворе Na I. В большинстве отношений раствор хлорида натрия не эквивалентен морской воде, однако подобные эксперименты все же позволяют в какой-то мере предсказать и поведение металлов в морских условиях. Хотя многие нз исследованных сплавов оказались сравнительно невосприимчивыми к коррозионному растрескиванию под напряжением, тем не менее ддя большинства из них можно подобрать такие комбинации геометрии надреза и величины приложенного напряжения, при которых растрескивание произойдет (рис. 60).  [c.123]

Абсолютные и относительные характеристики, полученные в коррозионно-усталостных испытаниях при асимметричном цикле нагружения образцов с надрезом в условиях стесненной деформации, свидетельствуют, что с повышением среднего напряжения цикла более интенсивное снижение предельных амплитуд напряжений наблюдается при одноосном растяжении, чем при двухосном. При среднем напряжении цикла Од < 0,8ст ,2 преимущество имеют более прочные стали 16ГНМ и 14ГНМА, а при больших значениях Oq — сталь 22К.  [c.178]


Если оценка статической трещиностой-костн конструкции осуществляется без дополнительного исследования усталостного и коррозионного разрушения, то ретаментирован-ное повреждение может представлять собой сквозной или поверзсностный надрез с инициированной из его вершин усталостной трещиной (рис. 11.4.1). Ее расчетная длина / должна удовлетворять требованиям стандарта [50], а способ и условия выращивания имитировать таковые при экспериментальном режиме эксплуатации конструкции со стабильно развивающейся трещиной.  [c.286]

В зависимости от степени легирования у ферритных стал( наблюдается различная чувствительность сопротивления yen лости к воздействию коррозионной среды и к надрезу. Соотве ствующие данные, получеш хе в условиях многоцикловой (в сокочастотной) усталости, приведены в табл. А2.4. Влияние yi занных факторов на сопротивление малоцикловой усталос аналогично.  [c.46]

При сравнении защитной способности гидроизолирующего покрытия (5) с комбинированной системой, имеющей надрез (2), оказывается, что протектирующий подслой даже в условиях надреза повышает предел коррозионно-усталостной прочности стали с 170 до 205 МПа. Цинкнаполненное покрытие с надрезом и без него 3 и 4) в равной степени обеспечивают предел коррозионноусталостной прочности на уровне 210. .. 230 МПа, т. е.  [c.290]

Коррозионное разрушение сплава Ti — 8% Al—1%Мо — 1% V изучали на образцах с двухсторонним надрезом в условиях растяжения. Коррозионное растрескивание отмечалось в растворах хлоридов, бромидов и иодидов (0,6М концентрации), но в растворах щелочи, фторида, сульфида, сульфата, нитрита, нитрата, перхлората, цианидов и тиоцианидов сплав был стоек. Фторид, щелочь и перхлорат препятствовали коррозионному растрескиванию сплава в растворах хлорида, бромида и иодида при соотношении молярных концентраций (10—100) 1 и выше. При потенциалах более отрицательных, чем —0,75 В (по н. в.э.), образцы во всех растворах имели катодную защиту. Область анодной защиты была зарегистрирована для растворов бромида и хлорида. Наблюдали растрескивание и в чистых растворителях дистиллированной воде, метаноле, четыреххлористом углероде, метиленхлориде и трихлорэтилене. Появление коррозионных трещин в данном случае объясняется присутствием следов хлоридов как в металле, так и в агрессивной среде.  [c.174]

Извеетно, что замедленному разрушению способствует неоднородность структуры (закалка стали без отпуска, перегрев при закалке, наводороживание сталей и титановых сплавов, переходная зона сварных соединений и т. п.) и нагружения (надрезы, трещины, перекосы и т. п.), повышенные запасы упругой энергии системы, воздействие коррозионных и поверхностно-активных сред [11]. В зависимости от условий эксплуатации или испытаний один и тот же материал может обнаруживать или не обнаруживать склонности к замедленному разрущению (рис. 1 и 2).  [c.210]

В лабораторных условиях замедленное разрушение удается воспроизвести, если исследуемый материал (образец) имеет нестабильную или неоднородную структуру или если неоднородны исходные условия испытаний, к которым можно отнести нарушение оптимальных условий термической обработки (перегрев, отсутствие отпуска и др.), наводороживание, местную пластическую деформацию, воздействие жидких сред, в том числе коррозионно-нейтральных, наличие хрупких слоев на поверхности, а также неоднородность поля напряжений (перекос, внецентренность и др.) и т. д. Общим для всех этих состояний и условий является понижение пластической энергоемкости тела в целом (образца). При переходе к испытаниям тех же материалов, но в условиях или состояниях, способствующих равномерному распределению деформации по объему во времени, склонность материала к замедленному разрушению исчезает или уменьшается. Так, например, С. С. Шуракову [24] удалось наблюдать временную зависимость прочности при испытании образцов из стали ЗОХНЗА только в закаленном без отпуска состоянии (рис. 19.7). Я. М. Потак [17] установил временную зависимость прочности стали ЗОХГСА в закаленном без отпуска состоянии при осевом растяжении только у надрезанного образца на гладком образце из стали в том же состоянии склонность к замедленному разрушению не проявилась. Удалось воспроизвести замедленное разрушение на образцах из стали ЗОХГСА в структурностабильном состоянии, после закалки и отпуска при 510° С, но в условиях резкой исходной неоднородности поля напряжений. Образцы имели острые кольцевые надрезы, в вершине надрезов были созданы предварительным нагружением трещины, испытание проводили путем растяжения с перекосом на податливых испытательных машинах.  [c.151]

Все факторы, препятствующие локализации деформации в материале и способствующие увеличению пластической энергоемкости материала в процессе равновесного и неравновесного развития деформации и разрушения, должны способствовать улучшению работы материала при длительных нагружениях наличие мягких слоев на поверхности детали, увеличение радиусов в вершине надрезов, уменьшение градиентов напряжения, учет анизотропности материала, защита от коррозионного и адсорбционного воздействия сред и т. д. Это относится не только к лабораторным испытаниям, но и является условиями рационального конструирования и технологии, особенно в тех случаях, когда отдельные входящие в узел детали, составляющие неподгружае-мую напряженную систему, резко различны по податливости, например, болтовые соединения, детали цилиндров, нагруженных внутренним давлением, и др.  [c.154]

Иногда утверждают, что испытания образцов с предварительно выращенной трещиной не выявляют начальной стадии ее зарождения, и что этн испытания во многом имитируют образование коррозионного питтинга и концентрацию напряжений, возникающую в питтинге у вершины выращенной трещины. Однако такие утверждения редко полностью справедливы. Геометрия питтинга, надреза нли предварительно выращенной трещины часто важна как для протекания электрохимических реакций, так и для распределения напряжений. Это объясняется тем, что нарушение непрерывностн формы может послужить причиной создания (в зависимости от состава коррозионной среды или электродного потенциала) условий для локализации электрохимических процессов, которые необходимы для протекания процесса коррозионного растрескивания. Иногда приводят и другие возражения относительно использования образцов с предварительно выращенной трещиной. В частности, полагают ие обоснованным выращивать транскристаллитную трещину, еслн она затем все равно в процессе коррозионного растрескивания преобразуется в межкристаллитную отрицают также необходимость значительных затрат времени и сил для выращивания очень острой трещины, поскольку коррозионные процессы вследствие растворения приводят к образованию притупленных трещин, не достигающих той степени остроты, которая действительно существует в реальных материалах. Одно из основных достоинств метода испытания образцов с предварительно выращенной трещиной состоит в том, что этн испытания позволяют получать данные, которые предусматривают безопасную работу конструкции при наличии в ней максимально допустимых по размерам дефектов.  [c.319]


Но хотя в условиях полного погружения для ослабления сцепления покрытия с основным металлом необходима значительно более сильная коррозия, чем в условиях атмосферного воздействия, в первом случае может происходить усиленное разрушение в местах нарушения покрытия. Если сделать надрез медного покрытия на железе и предмет поместить в жидкость с высокой электропроводностью, возможно, что местная коррозия будет интенсивнее, чем в случае, если бы вся поверхность была обнажена. В общем коррозионный процесс определяется размером большого медного катода, но концентрируется на небольшой анодной поверхности (обнаженного железа), вследствие чего разрушение на единицу поверхности велико. Если покрытие состоит из никеля или свинца вместо меди, электродвижущая сила соответственно падает, и возможность усиления коррозионного процесса УлМеньшается если применяемая жидкость обладает плохой проводимостью, увеличивается, следовательно, сопротивление, и возможность усиления процесса также уменьшается кроме того, увеличение толщины покрытия и уменьшение величины пор приводит также к увеличению сопротивления и уменьшает опасность усиления процесса. Ясно, что интенсификация коррозионного воздействия имеет место в меньшей степени в том случае, когда металл вместо погружения в жидкость просто покрыт пленкой влаги. Тем не менее ускорение коррозионного процесса наблюдалось и на поврел<ден-ном участке медного покрытия, подвергавшегося действию атмосферы, содержащей влагу и хлористый водород-.  [c.682]


Смотреть страницы где упоминается термин Надрез как условие коррозионного : [c.485]    [c.412]    [c.115]    [c.52]    [c.393]    [c.117]    [c.47]    [c.277]    [c.315]    [c.118]    [c.600]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.0 ]



ПОИСК



Надрез

Надрез как условие коррозионного растрескивания в водных растворах



© 2025 Mash-xxl.info Реклама на сайте