Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Типы квантовых генераторов

Представляется целесообразным для более полного представления о различных типах квантовых генераторов привести следующую таблицу их классификации (табл. 1). Хотя эта таблица и не претендует на полноту, тем не менее она дает общее представление о многообразии существующих в настоящее время ОКГ, которые могут быть использованы для той или иной цели в машино- и приборостроении.  [c.17]

Полупроводниковые квантовые генераторы во многом отличаются от других типов квантовых генераторов, хотя и используют тот же принцип. Самое замечательное их свойство состоит в возможности непосредственного преобразования энергии электрического тока в энергию света. Коэффициент полезного действия при таком преобразовании может приближаться к 100%. Кроме того, их мощность в расчете на один кубический сантиметр излучающего вещества в сотни тысяч раз больше, чем у других типов генераторов.  [c.92]


Следовательно, условием усиления электромагнитной волны ансамблем атомов является распределение в нем населенностей по энергетическим уровням, противоположное имеющему место обычно при термодинамическом равновесии. Число молекул на верхнем энергетическом уровне в отличие от распределения Больцмана должно быть больше, чем на нижнем. Для осуществления этого условия, очевидно, необходимо предварительно подвергнуть ансамбль соответствующему воздействию, которое привело бы к должному перераспределению частиц по энергиям. Такого рода воздействие (накачка) в различных типах квантовых генераторов и усилителей осуществляется различными способами, например облучением ансамбля потоком фотонов или электронов и т. д. Если после накачки ансамбль частиц подвергнуть в каком-либо направлении облучению фотонов слабой интенсивности  [c.9]

Из разнообразных типов квантовых генераторов (лазеров) для обработки материалов в основном используются твердотельные и газовые лазеры. В твердотельных лазерах генерация излучения осуществляется в твердом активном элементе, в качестве которого исполь-  [c.562]

Нагрев образцов производится пучком электронов или газовыми смесями, как например в рефлекторных печах, плазменных горелках и устройствах типа квантовых генераторов (лазеров).  [c.8]

В начале 60-х годов были созданы источники света иного типа, получившие название оптических квантовых генераторов или лазеров. В противоположность некогерентным источникам, электромагнитные волны, зарождающиеся в различных частях оптического квантового генератора, удаленных друг от друга на макроскопические расстояния, оказываются когерентными между собой. В этом отношении квантовые генераторы вполне аналогичны источникам когерентных радиоволн.  [c.769]

Основным понятием, которым мы оперировали на протяжении всего курса, служила плоская (или сферическая) волна. В данной главе выяснилось, что применительно к оптическим квантовым генераторам более адекватным физическим образом является совокупность когерентных между собою волн, удовлетворяющая требованиям принципа цикличности. Такая совокупность, характеризующаяся определенными частотой, поляризацией и стационарной геометрической конфигурацией, носит название типа колебаний резонатора ). В резонаторе, образованном плоскими зеркалами, типом колебаний служит стоячая волна (229.8), в случае резонатора со сферическими зеркалами, — стоячая волна, состоящая из двух гауссовых пучков, распространяющихся навстречу друг другу, волновые фронты которых совпадают с поверхностями зеркал. В других случаях конфигурация поля будет иной, характерной для каждой конкретной геометрии резонатора.  [c.809]


В данной главе мы изложили физические принципы, положенные в основу устройства оптических квантовых генераторов, разобрали некоторые их общие свойства и описали три типа лазеров — рубиновый, гелий-неоновый и лазер на красителях. Помимо указанных, существует большое число других лазеров, отличающихся по тем или иным свойствам, а именно способами возбуждения активной среды, спектральной областью, в которой находится излучение, мощностью, коэффициентом полезного действия, временными характеристиками и т. д. и т. п.  [c.819]

Твердые диэлектрики для оптических квантовых генераторов (лазеров) являются активной средой, представляющей собой кристаллическую или стеклообразную матрицу, в которой равномерно распределены активные ионы (активаторы). Все процессы поглощения и излучения света связаны с переходами электронов между уровнями активного иона, при этом матрица играет пассивную роль. Спектр излучения лазера в основном зависит от типа активного иона. Как вещество кристаллической или стеклообразной основы, так и активаторы должны удовлетворять целому ряду специфических требований. Свойства некоторых лазерных материалов приведены в в табл. 6.7,  [c.247]

Применение различных типов лазеров во многих областях машино- и приборостроения и правильная их эксплуатация невозможны без четкого представления о принципах работы оптических квантовых генераторов и об основных физических явлениях, в них происходящих. Преимущества и перспективность использования лазеров в машино- и приборостроении определяются не только прогрессом в области собственно лазерной техники, но и умелым, научно обоснованным выбором оптимальных для каждого конкретного применения режимов работы лазера и параметров его излучения.  [c.3]

Таким образом, мы приходим к заключению, что условием усиления электромагнитной волны ансамблем атомов является распределение в нем населенностей по энергетическим уровням, противоположное имеющему место обычно при термодинамическом равновесии. Число молекул на верхнем энергетическом уровне в отличие от распределения Больцмана должно быть больше, чем на нижнем. Это является основным условием работы всех типов квантовых усилителей и генераторов. В случае, когда V , будет меньше N , в ансамбле молекул в большей мере будут осуществляться переходы с нижнего уровня на верхний при поглощении фотонов, чем с верхнего на нижний. При этом ансамбль молекул будет являться поглощающей средой, ослабляющей проходящую через него электромагнитную волну.  [c.8]

Типы К. с. ч. По способу наблюдения спектральной линии в квантовом репере К. с. ч. подразделяются на активные и пассивные. Активный репер является квантовым генератором. Применяют активные К. с. ч. на водородном генераторе И рубидиевом генераторе с оптич. накачкой (рис. 1).  [c.326]

Лазерные установки. Излучение оптического квантового генератора (лазера) характеризуется большой интенсивностью потока электромагнитной энергии, высокой монохроматичностью, значительной степенью временной и пространственной когерентности. Вследствие этого лазерное излучение отличается от других источников электромагнитной энергии очень узкой направленностью. Диапазон длин волн, генерируемых различными типами лазеров и применяемых для технологических целей, колеблется в интервале 0,4—10,6 мкм. Возможность концентрирования энергии на малой площади за сравнительно короткое время позволяет использовать лазер для соединения тончайших изделий или их сочетания с массивными элементами конструкций, а также изделий, материалы которых чувствительны к тепловому воздействию.  [c.181]

Поверхностная закалка при нагреве лазером. Лазеры —эго генераторы света (квантовые генераторы оптического диапазона). В основу их работы положено усиление электромагнитных колебаний с помощью индукционного излучения атомов (молекул). Лазерное излучение монохроматично, распространяется очень узким пучком и характеризуется чрезвычайно высокой концентрацией энергии. Для промышленных целей применяют наиболее часто СОг-лазеры непрерывно-волнового типа мощностью 0,5— 5 кВт. Применение лазеров для тер.миче.ской обработки основано на трансформации световой энергии в тепловую.  [c.225]


Однако к. п. д. квантовых генераторов на рубине невелик и составляет 0,1%. В последнее время интенсивно ведутся работы по созданию квантовых генераторов на полупроводниках. В 1962 г. советские ученые впервые экспериментально показали принципиальную возможность создания полупроводниковых квантовых генераторов. В начале 1964 г. в СССР построен новый тип квантового полупроводникового генератора, возбуждаемого пучком быстрых электронов.  [c.92]

Несмотря на низкий к. п. д. оптических квантовых генераторов на рубине, в настоящее время генераторы только этого типа находят практическое применение при сварке. На рис. 61, а представлена схема сварочного квантового генератора на рубине.  [c.93]

Существующие в настоящее время сварочные оптические квантовые генераторы дают возможность получить частоту повторения импульсов от 4 до 10 в мин. Диаметр площади проплавления, получающейся в результате действия одного импульса луча лазера, составляет десятые доли миллиметра. Поэтому существующие оптические квантовые генераторы пока не могут быть использованы для сварки швов и используются лишь при сварке соединений типа точечной сварки.  [c.95]

Новый этап развития многолучевой интерферометрии связан с созданием оптических квантовых генераторов — лазеров. Наряду с активной средой и источником возбуждения основными элементами лазеров являются резонаторные системы, представляющие собой многолучевые интерферометры типа Фабри-Перо. Применение интерферометра в качестве объемного резонатора с открытыми боковыми стенками и торцовыми поверхностями, частично про-  [c.7]

Рассмотрены принципы работы и устройство различных типов оптических квантовых генераторов (лазеров). Рассказано о применении лазеров в науке и технике, а также в военном деле (по материалам открытой зарубежной печати).  [c.2]

Подлинную революцию в молекулярной спектроскопии совершили оптические квантовые генераторы когерентного излучения — лазеры, впервые созданные в 1960 г. В результате существенно расширились возможности техники спектроскопии (были разработаны разного типа высокоинтенсивные когерентные монохроматические источники света в широком диапазоне длин волн, работающие в импульсном и непрерывном режиме, лазеры, перестраиваемые по длинам волн, и т. д.) качественно изменились многие методики классической спектроскопии (спонтанное комбинационное рассеяние света, флуоресценция, резонансное комбинационное рассеяние света, спектры возбуждения и т. д.) и, самое главное, были созданы принципиально новые методы исследования вещества (обращенное комбинационное рассеяние, когерентное активное комбинационное рассеяние света, внутри-резонаторное поглощение и т. д.). Сейчас еще трудно предсказать все возможности дальнейшего развития лазеров. Ясно одно, что чувствительность, разрешающая способность, временное разрешение и т, д, изменились всего за полтора десятилетия настолько, что многое, казавшееся ранее фантастичным, как, например, регистрация одиночных атомов в газовой фазе, уже реализовано. У лазерной спектроскопии молекул многое впереди. Одной из сдерживающих причин практической реализации ее идей является сложность их внедрения в серийное производство.  [c.10]

Приемники оптического излучения разделяются на тепловые (рис. 10.20) и фотоэлектронные (рис. 10.21). Принцип работы первых основан на предварительном преобразовании энергии излучения в тепловую и последующем преобразовании ее в электрический сигнал (термоэлементы, болометры и пьезоэлектрики [34, 138]. Принцип работы фотоэлектронных приемников основан на использовании внешнего и внутреннего фотоэффекта. Различают вакуумные и газонаполненные фотоэлементы. Фотоэлементы с внутренним фотоэффектом представляют собой полупроводниковый фоторезистор (рис. 10.22). Их существенный недостаток — большая (0,01—0,1 с для некоторых типов) инерционность [34, 138]. Среди многообразия источников оптического излучения наиболее перспективными являются оптические квантовые генераторы (ла-  [c.605]

Ч. Таунсом (США), успешно применяются для обработки малых отверстий, канавок и других процессов. Процессы лазерной обработки реализуются на установках двух типов на базе твердотельных оптических квантовых генераторов (ОКГ) и на базе газовых ОКГ.  [c.225]

Внимание исследователей, работающих в области высоких температур, привлекают такие новые средства высокотемпературного обогрева, как электронные пушки , плазменные горелки, устройства типа квантовых генераторов (лазеров), дуговые отражательные печи и др. Среди них достойное место могут занять солнечные высокотемпературные печи, которые имеют специфические особенности и обладают рядом преимуществ по сравнению с другими устройствами. Эти преимущества заключаются в возможности достижения относительно простыми средствами плотностей лучистой энергии до 30-10 квт/м- и соответствующих температур до 3000— 4000° С, в бесконтактном способе чисто поверхностного подводо. энергии к образцу, в чистоте ( стерильности ) условий обогрева, в возможности применения любых газовых илп паровых атмосфер и вакуума, в полном отсутствии электрических и магнитных полей, в возможности обогрева любых оптически непрозрачных материалов независимо от их электрических и магнитных свойств.  [c.456]

К числу основных приборов радрюэлектроники относят приемники инфракрасного излучения теплового (болометр) и фотонного (фотосопротивление) типов, квантовые генераторы и усилители. Последние применяют для дальней космической связи, для радиолокации планет [6, 17, 22].  [c.112]

Технологическое оборудование для сварки когерентным световым лучом квантового генератора (лазера) или лазерной срарки используют в радио- и электронной промышленности. Благодаря острой фокусировке возможно сосредоточение очень большой тепловой энергии на площадках, измеряемых сотыми и тысячными долями миллиметра. Принципиально возможно создание лазера, пригодного для сварки очень толстого металла, но процесс плавления металла становится в этом случае практически неуправляемым. Поэтому в настоящее время лазерную сварку применяют для соединения металла сверхмалых толщин (металлическая фольга), проволок малого диаметра и т. п., т. е. изделий, которые не требуют разделки кромок. Основные типы сварных соединений — нахлесточные и стыковые.  [c.16]


В этой главе рассмотрим принцип действия и устройство некоторых квантовых генераторов, работающих в оптическом дпаиазоне длин волн (в ультрафиолетовой, видимой и ближней инфракрасной областях). На современном этапе лазеры достигли весьма высокого уровня развития. Существует большое число разнообразных типов и конструкций лазеров, среди которых можно выделить твердотельные, газовые (атомные, ионные, молекулярные), жидкостные (лазеры на красителях), химические, полупроводниковые.  [c.267]

Оптические квантовые генераторы (ОКГ), или лазеры, дают мощное когерентное излучение, которое невозможно получить при использовании обычных источников света. Если раньше когерентное электромагнитное излучение получалось и широко использовалось только в радиодиапазо не, то с появлением лазеров сфера его применения распространилась и на оптический диапазон спектра. Действие ОКГ основано на явлении вынужденного излучения, которое было открыто Эйнштейном в 1917 г. Идея использования этого явления для усиления света в среде с инверсной населенностью энергетических уровней принадлежит В. А. Фабриканту (1939). Первые квантовые генераторы были созданы в 1954 г. Н. Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом в США. В них использовалось вынужденное излучение возбужденных молекул аммиака на длине волны А,= 1,27 см. В 1960 г. был создан лазер на кристалле рубина, работающий в видимой области спектра (А = 694,3 нм), а в 1961 г. — лазер на смеси газов гелия и неона. В настоящее время имеются самые разнообразные типы лазеров, использующие в качестве рабочих сред газы, жидкости и твердые тела. Мощное и высококогерентное излучение ОКГ находит широкое применение в различных областях науки и техники.  [c.278]

Оптические квантовые генераторы с элементами из активированного стекла аналогичны по своему устройству, выполненным на элементах из рубина и других кристаллов. Из стекла, активированного неодимом, изготовляют активные элементы в виде стержней и в виде волокон или пучков волокон. Стержни одного из типов имеют диаметр 3,5 и 7 мм при длине 45,60 и 90 мм. Стержни из неодимового стекла применяют преимущественно в импульсных квантовых приборах. Активный элемент в виде волокна имеет сердцевину и оболочку из стекла различного состава. Сердцевина выполнена из активированного, оболочка — из бесцветного стекла с меньшим показателем преломления. Благодаря оболочке лучше исиользуется световая энергия накачки  [c.222]

Квантовая радиоэлектроника развилась очень быстро. От формулировки физической возможности осуществления вынужденного излучения до создания оптических квантовых генераторов прошло около 10 лет. История знает немного случаев такого стремительного развития целой области науки и техники. Практическое использование ОКГ началось, по сути дела, одновременно с их созданием. В кратчайшие сроки было налан ено промышленное производство и развернуты работы по исследованию их применений для самых различных целей. Наша отечественная промышленность выпускает лазеры разных типов и разного назначения. В качестве примеров первых промышленных типов ОКГ укажем на газовые лазеры непрерывного действия (ОКГ-11 и ОКГ-12), предназначенные для применения в физике, химии, медицине, биологии и т. д. Мощность излучения лазера ОКГ-12 достигает 35 мет. Установка на рубине для сварки и пробивания отверстий с помощью лазерного луча К-ЗМ позволяет регулировать энергию в пределах 0,001—1 дж и обеспечивает пробивание материалов до 1 мм толщиной с диаметром проплавляемой зоны 0,001—0,5 мм.  [c.414]

Полупроводниковые лазеры, в которых возбуждение осуш,е-ствляется при инжекции носителей через р—я-переход, получили название инжекционных ПКГ. Типичным представителем этой группы полупроводниковых квантовых генераторов является лазер на р— -переходе в арсениде галлия. Акцепторными примесями в кристалле арсенида галлия являются цинк, кадмий и др., донорными примесями — теллур, селен и др. Схема такого лазера приведена на рис. 42. Кристалл имеет размеры 0,5—1 мм . Верхняя его часть представляет собой полупроводник р-типа, нижняя — м-типа, между ними имеется р—п-переход. Толш,ина р—п-перехода 0,1 мкм, излучающий слой имеет несколько большую величину, 1—2 мкм, вследствие проникновения электронов и дырок через р— -переход в глубь кристалла.  [c.61]

Для измерения углов можно использовать круговые измерительные преобразователи типа Индуктосин , Оптосин , а также кольцевые оптические квантовые генераторы.  [c.209]

Виды динамических систем. По характеру ур-ний и методам исследования Д. с. делят на классы. Конечномерные и бесконечномерные (распределённые) Д. с.—системы с конечномерным и бесконечномерным фазовым пространством. В конечно-мерно.м случае консервативные и диссипативные Д. с. — системы с сохраняющимся и несохраняющимся фазовым объёмом. Г амильтоновы системы с ф-цией Гамильтона, не зависящей от времени, образуют подкласс консервативных систем. У диссипативных систе.м с неогранич. фазовым нространством часто существует ограниченная область в нём, куда попадает навсегда любая траектория. Д. с. с н е п р е-рывным временем (потоки) и Д. С. с дискретным временем (каскады) дискретность времени иногда отражает существо реального процесса (дискретность моментов прохождения импульса через усилитель п оптическом квантовом генераторе, сезонность в экологии, смена поколений в генетике н т. д.). Грубые и пегрубые Д. с. понятие грубости (структурной устойчивости) характеризует качественную неизменность типа движения Д. с. при малом изменении её параметров. Значения параметров, при к-рых система перестаёт быть грубой, наз. б и ф у р-к а ц и о н н ы м II (см. Бифуркация). При размерности фазового пространства больше 2 могут существовать целые области в пространстве пара.метров, где Д. с. оказывается негрубой.  [c.626]

И. наблюдается у мн. минералов и кристаллов, когда введением малых добавок существенно меняют или создают новые свойства. Так, введение малых изоморфных добавок, напр. Сг + в корунд AlgOa, Nd i- в гранат YjAljOia, превращает их в активную среду для квантовых генераторов введение изоморфных примесей в ПП кристаллы изменяют тип проводимости. Изоморфные примеси используют, напр., для изменения окраски ювелирных кристаллов.  [c.117]

Параллельно возникли и развивались направления, связанные со слабоионизованной плазмой. Открытие плазменно-пучкового разряда (1961) послужило основой создания новых источников плазмы, использующих энергию плотных электронных пучков для ионизации газа. Создаваемая в таких источниках плазма оказалась сильно неравновесной с большим числом возбуждённых ионов, атомов и молекул в метастабиль-ных состояниях, инициирующих ряд новых типов плазмохим. реакций. Неравновесная плазма пучкового разряда является рабочим веществом в плазмохим. реакторах по разделению изотопов, в квантовых генераторах когерентного излучения — плазменных лазерах и мазерах и др.  [c.606]

Оптические квантовые генераторы — лазеры — это приборы, преобразующие один из видов энергии (электрическую, световую, тепловую, химическую) в монохроматическое (т. е. строго одной длины волны) когерентное излучение электромагнитных волн (ультрафиолетового, видимого, инфракрасного диапазонов). Благодаря высокой монохроматичности, когере11тносги, острой направленности и высокой частоте излучения (10 —10 гц) лазеры находят широкое применение в науке, технике, военном деле. В табл. 1.19 приведены лазеры некоторых типов и их основные характеристики. В третьей графе таблицы указан режим работы лазеров импульсный (Имп.) или непрерывный (Непр.)  [c.48]

Опыт развития квантовых генераторов показал, что их применение для фундаментальных исследований развивается в двух направлениях. Вначале — это подход к лазеру как к объекту исследований, включая изучение свойств активных сред и процессов генерации. В качестве близкого авторам примера сошлемся на установление спектрально-кинетических характеристик неодимовых стекол по их спектрам генерации [82, 83]. В дальнейшем, если лазеры данного типа оказываются пригодными для широкого использования, они служат в разнообразных фундаментальных исследованиях источниками когерентного излучения с необходимыми параметрами. Естественно, что полученные при этом результаты и их обсуждение входят в компетенцию соответствующего раздела науки. Поэтому ниже этот аспект применения лазеров на смешении волн рассматриваться не будет, хотя уже имеются первые примеры успешного использования гибридных свип-ла-зеров на красителях с пассивным обращающим зеркалом в спектроскопических исследованиях [84]. Мы же сосредоточим свое внимание на физике ФРК-лазеров, теория которой еще очень далека от своего завершения.  [c.250]


К принципиально новому типу источников когерентного света относятся оптические квантовые генераторы (ОКГ), или лазеры, основанные на явлении индуцированного излучения. Принцип действия лазера заключается в том, что состояние равновесия (при котором, как правило, число атомов на основном уровне всегда несколько больше, чем на более высоком энергетическом уровне) нарушается таким образом, чтобы на уровне с большей энергией находилось больше атомов по сравнению с более низким энергетическим уровнем. Такое состояние называется состоянием с отрицательной температурой, так как оно описывается законом Больцмана, а температура имеет отрицательный Зцак при этом наблюдается потеря энергии атомами и увеличение мощности электромагнитной волны.  [c.79]

Десять лет тому назад был создан первый квантовый генератор света — лазер. С момента создания первых лазеров работы в области квантовой электроники развернулись в широких масштабах и развивались исключительно быстрыми темпами. Бурное развитие квантовой электроники продолжается и поныне. В результате за короткое время было разработано очень много разных типов лазеров твердотельные лазеры на кристаллах и стеклах, жидкостные лазеры, газовые лазеры (атомные, молекулярные, ионные), полупроводниковые лазеры (инжекционные, с электронным и оптическим возбуждением), лазеры с перестраиваемой частотой, химические лазеры, лазеры на основе вынужденного комбинационного рассеяния и др. Созданы импульсные лазеры и лазеры непрерывного действия, даюпхие когерентное излучение в широком диапазоне длин волн от ультрафиолетового (0,2 мк) до дальнего инфракрасного (538 мк) участков спектра.  [c.5]

Классическая оптическая молекулярная спектроскопия, которая внедрена в повседневную практику научных исследований и на промышленных предприятиях, имеет дело со спектрами электрических дипольных переходов, связанных с однофотонным по-глошением (УВИ- н ИК-спектры поглощения) и спонтанным одно- и двухфотонным излучением (УВИ-спектры испускания и КР-спектры). Другие типы взаимодействия излучения с веществом, которые благодаря созданию квантовых генераторов только начинают внедряться в лабораторную практику, мы рассматривать не будем и ограничимся в дальнейшем только использованием лазеров в качестве мощных источников монохроматического излучения для получения классических КР-спектров.  [c.51]


Смотреть страницы где упоминается термин Типы квантовых генераторов : [c.607]    [c.789]    [c.217]    [c.6]    [c.411]    [c.2]    [c.46]    [c.203]    [c.24]    [c.325]    [c.229]   
Смотреть главы в:

Оптика. Т.2  -> Типы квантовых генераторов



ПОИСК



Генераторы квантовые

Генераторы типа ГБТ

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте