Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеры на определение положения центра тяжести

Примеры на определение положения центра тяжести  [c.147]

Примеры на определение положения центра тяжести.......................119  [c.7]

Пример 3. Определить координаты центра тяжести сечения, показанного на рис. 6, а. Сечение состоит из двух уголков 56 X 4 и швеллера № 18. Проверить правильность определения положения центра тяжести. Указать положение его на сечении.  [c.18]

На основании рассмотренных примеров можно установить с л е-дуюш.ий порядок определения положения центра тяжести сложного сечения.  [c.155]


Общие положения. В предыдущих примерах было рассмотрено движение твердых тел, точки которых могли перемещаться только параллельно неподвижной плоскости. Рассмотрим теперь такое же движение в общем виде. Возьмем, например, цилиндр, лежащий своим основанием на неподвижной плоскости каждая точка тела будет тогда описывать траекторию, лежащую в неподвижной плоскости, параллельной заданной неподвижной плоскости. В частности, если через центр тяжести в его начальном положении провести плоскость хОу, параллельную неподвижной плоскости, то центр. тяжести будет оставаться в этой плоскости. То же самое будет для всех точек тела, лежащих в начальный момент в этой плоскости. Рассмотрим сечение 5 тела плоскостью хОу. Для определения положения тела достаточно, очевидно, знать положение этого сечения 5, т. е. координаты и т] центра тяжести О  [c.93]

Общие положения приближенного определения осевой нагрузки, действующей на болт, рассмотрим на примере крепления корпуса некоторого агрегата А (например, корпуса редуктора) к основанию В (рис. 11.1, а) с помощью г болтов,равно.мерно распределенны.х по поверхности стыка (фигуры, образованной местами соприкосновения деталей А и В). Центр тяжести этой фигуры (в данно.м случае составленной из четырех прямоугольников) принимаем за начало систе.мы координат с осями х, у, г и за центр приведения сил, -действующих на корпус (рис. 11.1,6).  [c.194]

Прежде всего необходимо определить направления обеих главных горизонтальных осей и общий центр тяжести 5 фундамента (включая машину), чем фиксируется положение трех главных центральных осей. Обычно отдельные конструктивные элементы фундамента располагаются параллельно или перпендикулярно главным центральным осям, так что радиус инерции легко может быть определен, как видно из примера определения радиуса инерции [у относительно оси у для фундамента, изображенного на рис. 1У.2.  [c.76]

Рассмотрим несколько простых примеров такого приведения. Груз, подвешенный к неподвижной точке А на пружине АВ (рис. 23), если учитывать распределенную массу пружины, представляет систему с бесконечным числом степеней свободы. Но когда масса груза значительно превышает массу пружины, при нахождении наименьшей (основной) частоты колебаний без большой погрешности можно пренебречь массой пружины, сохраняя все ее свойства упругости. Если, кроме того, предположить, что груз совершает прямолинейные (вертикальные) колебания, то рассматриваемая система обращается в приведенную систему с одной степенью свободы. Для определения движения такой системы достаточно найти только одну величину в функции времени — именно, отклонение х центра тяжести груза от положения равновесия О.  [c.101]


Центр тяжести площади трапеции. Как пример определения положения центра тяжести площади многоугольника рассмотрим определение положения центра тяжести площади трапеции ABDE (рис. 156). Как и в случае треугольника, приходим к выводу, что центр тяжести лежит на отрезке MN прямой, соединяющей середины оснований трапеции. Следовательно, остается найти расстояние i/ =/1д центра тяжести от нижнего основания. Разлагая трапецию на треугольники так, как это показано на рис. 156, и обозначая площадь ААВЕ через Si, а ABDE через Sj, найдем  [c.311]

Пример. Расс.мотрим определение положения центра тяжести дуги окружности радиуса R (рис. 159). Пусть дуге окружности соответствует центральный угол 2а. Выберем систему координат так, как это показано на рисунке. Очевидно, при этом Xq=Q, и остается найти лишь у . Имеем dl = Rd<  [c.313]

За доказательством этого принципа Дарси отсылает к упоминав-гпейся работе 1747 г. ( Задача динамики... , [119]), где тот же его принцип сформулирован в иных терминах. Действительно, площади указанных там секторов могут быть заменены произведением скоростей на перпендикуляры к их направлениям. Па примере задачи об ударе двух тел Дарси показывает аналогичность его принципа закону сохранения живых сил. Рассматривая равновесие тел, он демонстрирует свой принцип для задач определения положения центров тяжести, колебаний и удара, для получения законов преломления света. Работа 1752 г. [122] повторяет аргументы Дарси. Па публикации Дарси откликнулся швейцарский математик Ж. Л. Бертран. В трудах Берлинской академии за 1753 г. он писал, что принцип наименьшего действия следует из вычислений г. де Мопертюи, которые он привел для определения закона удара твердых тел. В связи с тем, что г. Дарси далек от признания этих вычислений подозрительными, что, несомненно, означало бы ошибочность принципа Мопертюи, ничего не остается, кроме как признать завышенную очевидность заключения (Дарси. — В. Я.). Г. Дарси должен был подумать о согласовании этого очевидного противоречия, понять, как это возможно, что он и г. де Мопертюи, исходя из принципа наименьшего действия, с помощью сугубо математических преобразований, пришли он — г. Дарси — к абсурду, а г. де Мопертюи — к хорошо известной истине [260, с. 29].  [c.252]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


В рассмотренных выше примерах вращения тела вокруг закрепленной оси или плоского движения ось вращения сохраняла неизменным свое направление в пространстве. Это обеспечивалось определенными внешними условиями. При вращении тела вокруг неподвижной оси эта ось удерживается в неизменном положении подшип-(шками. При скатывании цилиндра направление перемещения оси задавалось наклонной плоскостью. Однако после того, как цилиндр скатился с наклонной плоскости, он продолжал бы вращаться вокруг той же оси, и хотя ось вместе с центром тяжести двигалась бы уже не прямолинейно, а по параболе, но она сохраняла бы неизменным свое направление в пространстве. Такие оси вращения, которые в отсутствие каких-либо связей могут сохранять неизменным свое направление в пространстве, называются свободными осями тела. Возможность существования таких свободных осей и условия, которыми они определяются, мы выясним на простейшем примере.  [c.435]

Эти предложения тесно связаны с работами Архимеда по геометрии. Примером применения теоретических положений механики к геометрии может также слун игь определение площади сегмента параболы, осповаиное на законе рычага и теоремах о центре тяжести плоских фигур, которое приведено в математическом сочинении Архимеда Квадратура параболы . О тесной связи методов механики и математики в творчестве Архимеда свидетельствует Эфод, или послание к Эратосфену о механических теоремах . В этом произведении механика рассматривается как средство решения геометрических задач. Правда, Архимед не считал механический метод строгим, оя рассматривал его как удобный прием для получения некоторых геометрических результатов, которым после этого надлежало дать строгое геометрическое доказательство.  [c.31]

Пример 3. Гироскои состоит из полусферической оболочки с внешней осью, проходящей через ее вершину. На оси находится груз. Двигая груз вверх и вниз, можно соответственно поднимать или опускать центр тяжести гироскопа. Груз находится в определенном положении, и гироскоп, неподвижной точкой которого служит его вершина, приводится в быстрое вращение с помощью нити, намотанной на ось. Полученное движение оси вокруг вертикали будет прецессионным. Определить, в каком направлении нужно перемещать груз, для того чтобы изменить знак скорости прецессии.  [c.171]


Смотреть страницы где упоминается термин Примеры на определение положения центра тяжести : [c.119]   
Смотреть главы в:

Курс теоретической механики Ч.1  -> Примеры на определение положения центра тяжести



ПОИСК



411 — Пример определения

8 — Положение — Определение

Определение Пример определения

Определение положения центра тяжести

Определение центра тяжести

Тяжесть

Центр Положение

Центр определение

Центр тяжести

Центр тяжести Определение центра тяжести

Центр тяжести — Определени



© 2025 Mash-xxl.info Реклама на сайте