Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь легированная - Химический состав

Сталь легированная Машиностроительная Химический состав (ГОСТ 4543—57)  [c.58]

Химический анализ углеродистых сталей производится по указаниям ГОСТ 2331-43 легированные стали исследуются на химический состав по ГОСТ 2604-44.  [c.29]

Сталью называют сплав железа с углеродом (до 2 %) и другими элементами. Большое влияние на обрабатываемость стали оказывает ее химический состав. С увеличением содержания углерода повышается механическая прочность стали и, как следствие, возрастает ее сопротивление резанию, но увеличивается шероховатость поверхности. При обработке стали с малым содержанием углерода (0,1. ..0,25 %) достигается лучшая шероховатость поверхности. По химическому составу стали подразделяют на углеродистые и легированные.  [c.30]


Для изготовления колец и тел качения подшипников, предназначенных для эксплуатации в наиболее трудных условиях — при повышенных температурах и в агрессивных средах, применяют теплостойкие и коррозионностойкие высокоуглеродистые легированные подшипниковые стали и сплавы. Отечественные теплостойкие подшипниковые стали относятся к классу умеренно легированных подшипниковых сталей и сплавов. Химический состав основных марок теплостойких сталей приведены в табл. 20.23 и их механические свойства приведены в табл. 20.24.  [c.775]

Конструкционная легированная сталь имеет гарантированный химический состав и гарантированные механические свойства (табл. 4).  [c.9]

Легированные стали имеют гарантированный химический состав механические свойства и обязательно подвергаются термической обработке. Изготовление, например, ковша экскаватора большой мощности из низколегированной стали взамен обычной позволяет увеличить его емкость и производительность машины на 20—25% или уменьшить массу ковша на 15%. Наибольший эффект Достигается при выполнении из этих сталей элементов, работающих преимущественно на растяжение. Для элементов, работающих на сжатие и изгиб, эффект от применения низколегированных сталей значительно ниже.  [c.144]

После термической обработки инструмент из быстрорежущих сталей имеет твёрдость HR 62—63 и может работать при скоростях резания в 2- раза выше, чем инструмент, изготовленный из инструментальной стали. Увеличение в быстрорежущей стали содержания ванадия и дополнительное легирование кобальтом значительно повышает ее твердость, теплостойкость и тем самым — износостойкость, М р быстрорежущих сталей и их химический состав приведены в  [c.190]

Валки непрерывного стана, изготовляемые из кованой углеродистой стали, недостаточно стойки. Большую стойкость имеют валки из легированной стали. Валки из легированной стали имеют следующий химический состав 0,05—0,6% С 0,4—0,7% Мп 0,3—0,5% 51 1,5—2,0% Сг, до 0,5% N1 до  [c.394]

Кроме твердости на обрабатываемость сталей влияет их химический состав, в частности наличие легирующих элементов. Чтобы примерно оценить обрабатываемость некоторых групп легированных сталей, в табл. 3 приве-  [c.39]

У электродов для сварки конструкционных сталей не регламентируется химический состав наплавленного металла ГОСТ определяются только механические свойства металла шва, которые должны соответствовать определенным требованиям. В электродах для сварки легированных сталей с особыми свойствами ГОСТ регламентируются не только механические свойства металла шва, но и тип металла шва.  [c.97]


Для легированных сталей необходимо учитывать более точно химический состав металла шва (рис. 105). Изучая комплексное легирование металла шва с пределом легирования  [c.200]

Стальные электроды применяются при дуговой электрической сварке конструкционных, легированных сталей, сталей с особыми свойствами, при сварке чугунов и при наплавке. Металлические электроды для дуговой сварки черных металлов разделяются по свойствам покрытий на электроды с ионизирующим покрытием (тонкопокрытые) и электроды с защитным покрытием (толстопокрытые), которые способны наряду с защитой значительно легировать металл шва, меняя химический состав и механические свойства наплавленного металла.  [c.31]

Таблица 8. Химический состав, термическая обработка и механические свойства некоторых легированных улучшаемых сталей Таблица 8. <a href="/info/9450">Химический состав</a>, <a href="/info/6831">термическая обработка</a> и механические свойства некоторых легированных улучшаемых сталей
При выборе скорости нагрева необходимо учитывать химический состав стали. С увеличением С в стали уменьшается ее теплопроводность. Особенно резко уменьшается теплопроводность при легировании стали. Чем меньше теплопроводность стали, тем медленнее должен быть ее нагрев во избежание возникновения внутренних напряжений  [c.116]

Химический состав и механические свойства цементуемых конструкционных легированных сталей после закалки в масле и отпуска при 200°С (ГОСТ 4543 — 61)  [c.180]

Химический состав и механические свойства улучшаемых конструкционных легированных сталей  [c.184]

Химический состав легированных инструментальных сталей неглубокой прокаливаемости (ГОСТ 5950—63)  [c.238]

Химический состав легированных сталей для штампов холодного деформирования приведен в табл. 14.7, механические свойства —в табл. 14.8.  [c.243]

Химический состав легированных сталей для ударного инструмента приведен в табл. 14.11 механические свойства и назначение—в табл. 14.12.  [c.249]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]


Виды сталей практически все применяют для получения заготовок обработкой давлением углеродистые и легированные конструкционные высоколегированные коррозионно-стойкие, жаростойкие и жаропрочные инструментальные и д р, Марки, химический состав и свойства этих сталей приводятся в соответствующих стандартах и справочниках [2,4].  [c.88]

В работе [1] приведены результаты исследований ряда аусте-нитных хромоникелевых сталей, легированных титаном, ниобием, алюминием, кремнием и молибденом в количестве 1,2—1,5 %. Химический состав сталей и средние значения скорости переноса масс представлены в табл. 17.1 и 17.2. Испытания по определению переноса масс проводили в течение 1000 ч в потоке жидкого натрия при 900 °С на входе в испытательный участок, 860 °С на выходе и массовом содержании кислорода (1—3)-10 %.  [c.262]

В справочнике приведены химический состав, механические и физические свойства, режимы термической обработки и названия большинства углеродистых, легированных и высоколегированных сталей, применяемых в настоящее время в мировой практике. Содержатся основные данные о конструкционных, инструментальных, нержавеющих, кислотоупорных, теплостойких и жаропрочных талях двенадцати стран Европы, Америки и Азии (ФРГ, США, Бельгия, Англия,  [c.268]

Классификация легированных сталей по химическому составу является одной из важных, так как химический состав легированной стали является основой ее маркировки по ГОСТу. Маркировка легированных сталей осуществляется так, что условное обозначение, выраженное буквами и цифрами, показывает примерный химический состав стали.  [c.143]

Химический состав и механические свойства легированной конструкционной стали (по гост 4543-57)  [c.18]

Химический состав и твердость инструментальной легированной стали (по гост 5950—51)  [c.22]

Во втором томе Конструкционная сталь приведены химический состав, физические, механические, технологические свойства и области применения конструкционной углеродистой и легированной стали.  [c.7]

Назначение, химический состав, физические свойства и температуры критических точек конструкционной легированной стали приведены в табл. 1—3.  [c.305]

Химический состав легированной конструкционной стали (по ГОСТу 454 —6 >  [c.308]

Химический состав углеродистой и легированной стали для отливок приведен в табл. 2—3.  [c.445]

Химический состав легированных сталей для режущего и легированного инструмента по ГОСТу 5950—63 указан в табл. 9.  [c.346]

Химический состав легированных инструментальных сталей  [c.346]

Химический состав стали 15ХСНД (СХЛ1, СХЛ2, НЛ2) был разработан с учетом, что производство этой стали в основном будет базироваться на природнолегированном чугуне, полученном из хромоникелевых руд Орско-Халиловского месторождения (отсюда и первое обозначение этой стали СХЛ — сталь халиловская легированная). Это предопределяло наличие в стали 0,3— 0,5% Ni [84—86]. Требование повышенной коррозионной стойкости обусловило ввод в состав стали меди, нижнее содержание которой определялось минимумом, необходимым для существенного повышения стойкости стали против атмосферной коррозии (0,2—0,3%). Верхний предел содержания углерода, исходя из требования хорошей свариваемости, был принят 0,18%. В состав стали был также введен хром. Последний в комбинации с медью благоприятно влияет на коррозионную стойкость, а также несколько упрочняет сталь. С этой же целью содержание кремния было установлено несколько более высоким, чем у углеродистых спокойных сталей [87]. Первоначальный химический состав этой стали (по  [c.98]

Условное обозначение типа электрода расшифровывают сле-дуюшим образом буква Э — электрод, стоящее за ней число — временное сопротивление на разрыв металла шва (так, электроды типа Э46 марок ОЗС-4, АНО-3 должны обеспечить временное сопротивление не менее 451 МПа). Буквы и цифры, входящие в обозначение типов покрытых электродов для сварки легированных сталей, показывают примерный химический состав наплавленного металла (Э-09Х1МФ, Э-12X13). Для каждого типа покрытых электродов разработаны одна или несколько марок, отличающихся химическим составом сварочной проволоки и составом покрытия, свойствами наплавленного металла шва.  [c.104]

Легированньье стали. Назначение легирующих элементов в легированных сталях — улучщить закаливаемость и прокаливае-мость при малых диаметрах поперечного сечения без значительного повышения твердости. Химический состав этих сталей приведен в табл. 14.3.  [c.237]

Хромистые перлитные стали представляют собой высокоуглеродистые заэвтектоидные стали, легированные 0,6—1,5% Сг. Износоустойчивость перлитных сталей достигается закалкой с 800—880° С (в масле) или 780—840° С (в воде) и отпуском при 150—160°С (химический состав и механические свойства сталей ШХ6, ШХ9, ШХ15 и ШХ15СГ рассмотрены в 12.4).  [c.275]

НПО ЦНИИТМАШ разработана и освоена экономно легированная сталь 03Х8СЮЦ (ЭП-889), предназначенная для работы в окислительных газовых средах при температуре до 900 °С, Сталь технологична на всех стадиях передела от выплавки слитков до изготовления прутков. Химический состав стали углерод — не более 0,030% церий — не более 0,20% марганец — ш более 0,50% сера — не более 0,025% фосфор — не более 0,025% кремний — 1,2—1,80% хром — 7,0—8,50% алюминий — 0,7-  [c.236]

Для легирования стали ванадием используются золошлаковые отходы от сжигания мазута на тепловых электростанциях. Анализ показывает, что в золе обычно содержится до 30% пентонида ванадия, около 10% оксида никеля и до 30—40% сульфатов. В шлаках, отобранных с пода мазутных котлов блоков 800 МВт, содержание пентоксида ванадия изменялось от 21 до 45% (в пересчете на ванадий 12—15%), никеля — 3,6—12% и серы до 0,3—0,6%. Химический состав золы и шлака в топке определяется как характеристиками сжигаемых мазутов, так и типом используемых форсунок, а также термодинамическими и аэродинамическими условиями.  [c.240]


Исходным этапом является конкретный химически состав Xi (предмет патентования) сплава на основе же леза Хз, т. е. среднелегированной стали Хд с компози цией элементов х Мп—Сг—Мо—V. Промежуточны решения выявляются из описания формулы изобрете ния дополнительное легирование (Хб) элементами груп пы As, Sn,. .., Pb, Se, Те (Xj). Выполнение этапов х  [c.238]

Титан — химически активный элемент, но вследствие образования на его поверхности защитной весьма плотной и однородной пленки, химический состав которой зависит от окружающей среды и условий образования (чаше всего пленка рутиловая—TiOj), он становится пассивным. Защитная пленка делает титан более стойким, чем нержавеющая сталь, во многих агрессивных средах, в том числе в разбавленной серной кислоте, царской водке, разбавленной и концентрированной, но не дымящей азотной кислоте. Технически чистый титан особенно стоек по отношению к действию морской воды. Опыт (с пересчетом) показал, что за 4000 лет лист титана разрушится на толщину бумажного листа. Легирование титана молибденом, цирконием, ниобием приводит к образованию еще более стойких защитных пленок.  [c.324]

В табл. 1.8 приведены марки стали и сплавов, рекомендуемых ЦКБ А для энергетической арматуры АЭС. В табл. 1.9 и 1.10 приведены марки материалов, которые применяют зарубежные фирмы для изготовления узлов и деталей арматуры для АЭС, а в табл. 1.11 — химический состав материалов этих марок Механические характеристики легированных сталей, применяемых в арматуро строении, приведены в табл. 1.12—1.14. В обозначениях марок стали буквы обо значают А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь Е — селен, К — кобальт, М — молибден, Н — никель, Р — бор, С — кремний  [c.27]

Определить химический состав стали с целью выявить наличие легирующих элементов можно стилоскопированием. Этот метод заключается в качественном спектральном анализе при помощи портативного стилоскопа, благодаря чему результат может быть получен быстро, так как продолжительность испытания составляет доли минуты. В заводских или монтажных условиях стилоскопиро-вание целесообразно применять для проверки материала деталей, не имеющих сертификата или с нарушенной маркировкой можно определить, например, изготовлены детали из легированной или углеродистой стали. Принцип действия стилоскопа заключается в следующем. Между электродом из меди, угля или чистого железа и деталью возбуждается электрический разряд. Световые лучи,  [c.217]


Смотреть страницы где упоминается термин Сталь легированная - Химический состав : [c.77]    [c.52]    [c.103]    [c.416]    [c.433]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.3 , c.39 , c.399 ]



ПОИСК



27 легированные — Химический соста

Легированная Химический состав

Свинецсодержащие стали легированные — Марки 137 — Назначение в автомобилестроении 137 — Режимы термообработки 138 — Скорость резания инструмента при точении сталей 139 Твердость 138 — Химический соста

Составы сталей

Сталь Химический состав

Сталь инструментальная высокохромистая легированная 168 — Марки Применение 171 —ТвердостьНормы 170 — Химический состав

Сталь конструкционная — Обрабатываемость резанием легированная — Физические свойства 143 — Химический состав

Сталь легированная

Сталь легированная инструментальная — Назначение 1 — 29 — Твердость и химический состав

Сталь легированная инструментальная — Назначение 1 — 29 — Твердость и химический состав и химический состав

Сталь рессорная горячекатанная рессорно-пружинная легированная — Химический состав

Сталя легированные



© 2025 Mash-xxl.info Реклама на сайте