Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Карбидная фаза

Те же самые процессы наблюдаются при отпуске и в легированной стали. Однако легирующие элементы задерживают процессы рекристаллизации, сдвигая их течение в сторону более высоких температур. Большинство легирующих элементов (V, Мо, Сг, Мп, 51) замедляют и коагуляцию карбидной фазы при отпуске. Последнее означает, что после высокого отпуска при одинаковой температуре в легированной (указанными элементами) стали карбидная фаза всегда будет мельче, чем у нелегированной стали. Только N1 и Со, а возможно также и Си ускоряют при отпуске процессы коагуляции карбидной фазы.  [c.289]


Более высокие температуры закалки этих сталей против углеродистых являются результатом повышения критических точек при легировании хромом, вольфрамом, кремнием, а также следствием более медленного растворения карбидов. В этих сталях карбидной фазой является карбид М3С (легированный хромом, вольфрамом, марганцем цементит), за исключением стали ХВ5, в которой растворимой карбидной фазой является карбид М3С, а избыточной М С.  [c.296]

КАРБИДНАЯ ФАЗА В ЛЕГИРОВАННЫХ СТАЛЯХ  [c.352]

При высоком отпуске по границам зерна происходит более ускоренное (в сравнении с объемом зерна) карбидообразование и насыщение карбидной фазы марганцем, хромом, а также образование специальных карбидов (при соответствующей легированности). Этот процесс приводит к обеднению карбидообразующими элементами приграничных слоев зерна. При последующем медленном охлаждении (или во время выдержки при 500—520°С) происходит обогащение этих приграничных слоев фосфором, так как при температурах ниже 600°С фосфор приобретает стремление к диффузионному перераспределению в направлении участков, обедненных карбидообразующими элементами (явление восходящей диффузии), а диффузионная подвижность атомов фосфора при этих температурах достаточно велика. В итоге сталь охрупчивается из-за ослабления прочности межзеренных сцеплений.  [c.375]

Карбидная фаза в быстрорежущих сталях  [c.423]

Итак, высокая красностойкость и высокие режущие свойства создаются растворением главным образом вторичных карбидов и легированием твердого раствора элементами, входящими в состав этих карбидов. Однако, если в отожженной стали Р18 содержится 25% карбидной фазы, то в раствор переходят только 10%, а 15% остаются в виде включений.  [c.426]

Существенным недостатком стали Х12 является пониженная механическая прочность, обусловленная наличием в этой стали большого количества карбидной фазы. А так как этой фазы будет тем больше, чем больше углерода в стали, то в силу этой причины сталь Х12 (с 2,0—2,3% С) применяют лишь для неответственных назначений и для простого по конструкции инструмента.  [c.437]

Никель, хотя и уменьшает растворимость углерода в аустените (рис. 362) и делает аустенит после закалки менее пересыщенным, тем не менее усиливает склонность стали к межкристаллитной коррозии (рис. 365), что объясняется тем, что никель ускоряет диффузию углерода и поэтому быстрее выделяется по границам зерна карбидная фаза.  [c.492]

Рассмотрим карбидную фазу легированных сталей. Она отличается от цементита и специальных карбидов легирующих элементов, поскольку на базе простых карбидов образуются специфические твердые растворы.  [c.164]


Известно, что в углеродистых сталях цементит (Ре С) является карбидной фазой. При введении легирующих элементов происходит замещение ими атомов Ре в цементите. Замещение может быть частичным или полным. При этом цементит с замещенными атомами Ре является легированным цементитом.  [c.164]

В сталях первой группы увеличение жаропрочности связано с процессами упрочнения у-твердого раствора вследствие образования карбидных фаз высокой степени дисперсности. Эти упрочняющие фазы, выделяясь при старении или во время работы сплава при высоких температурах, блокируют плоскости скольжения, отчего и повышается жаропрочность.  [c.210]

В сталях второй группы увеличение жаропрочности обусловлено образованием металлических соединений при старении или во время работы при высоких температурах. Механизм повышения интерметаллическими соединениями сопротивления сплава пластической деформации при рабочих температурах аналогичен механизму упрочнения сплава карбидными фазами.  [c.210]

У сталей данной группы наблюдается равномерное распределение карбидов (рис. 14.7). Между тем при содержании более 1,2% С усиливается карбидная неоднородность, а с повышением количества легирующих элементов уменьшается содержание С (сдвиг эвтектоидной концентрации) и увеличивается количество карбидной фазы.  [c.240]

Минимальное общее содержание основного легирующего элемента (Сг) в стали назначают с учетом концентрации углерода и возможности образования карбидной фазы (Сг, Ре)Сз или (Сг, Ре)С4,  [c.85]

Однако если после нагрева высоколегированных сталей выше A j охлаждение проводить медленно, то избыточная карбидная фаза (вторичный цементит) выпадает в виде сетки. Такая структура обладает низкой вязкостью и нежелательна почти во всех случаях. Поэтому заэвтектоидные стали отжигают при нагреве выше Лс и ниже Ас2, т.е. им дают неполный отжиг.  [c.365]

Использование в качестве легирующих добавок карбидных фаз позволяет получить структуру по типу "твердые включения-вязкая матрица", подобную твердым сплавам и обладающую повышенной твердостью. Степень упрочнения материала и изменение механических свойств зависят от режимов электронно-лучевой обработки и состава легирующих добавок. Оптимальное сочетание указанных факторов приводит к существенному повышению износостойкости модифицированных сталей (рис. 8.11).  [c.254]

Некоторые структурные изменения в металле после ТМО, например высокую дисперсность кристаллов мартенсита, можно наблюдать при обычном микроскопическом изучении шлифов. Однако наиболее существенные данные об изменении строения упрочненных сталей могут быть выявлены пока что лишь с помощью рентгеноструктурного анализа. Именно этот метод применен в большинстве исследований для оценки размера блоков и изменения плотности дислокаций в результате ТМО. К сожалению, до сего времени крайне мало работ посвящено электронномикроскопическому исследованию структуры упрочненных сталей (а именно этим методом можно проследить за изменением строения мартенситных пластин и выделением карбидной фазы) и еще не разработаны надежные методы выявления дислокаций в мартенситной фазе, что, безусловно, сильно осложняет анализ наиболее тонких структурных изменений стали при ТМО и не позволяет до конца вскрыть механизм упрочнения.  [c.80]

Вряд ли целесообразны попытки отдельных исследователей объяснить природу упрочнения при ТМО действием какого-либо одного предпочтительного фактора, тем более что в ряде работ [22, ПО, 136] показано, что получаемый в результате ТМО эффект упрочнения стали не связан непосредственно с размером зерна мартенсита или аустенита, как такового, и что предпочтительная ориентация не оказывает определяющего влияния на уровень прочности. Так, в работе [89] была получена после ТМО различная прочность стали (200 и 240 кГ ммР-) при одинаковой величине блоков. На основании проведенного исследования авторы работы [137] приходят, например, к заключению, что прочность стали, подвергнутой НТМО, повыщается либо в результате образования высокодисперсной карбидной фазы, которую не удается обнаружить металлографически, либо в результате повыщения растворимости углерода в мартенсите и пересыщения твердого раствора вследствие увеличения плотности дислокаций.  [c.84]


Высокологпровпниые хромистые стали, находящиеся в феррит-иом состоянии, при температурах выше И50° С обладают склонностью к быстрому росту зерна. Так как в таких сталях обычно присутствует и карбидная фаза, то при быстром нагреве и охлаждении, характерном для условий сварки, растворяющиеся карбиды обогащают углеродом только микрообъемы металла, прилегающие к ним, без общей гомогенизации, в результате чего в этих участках создаются условия протекания в них превращении а у, а при охлаждении — у а. Наиболее вероятны эти процессы вблизи границ зерен. В результате таких процессов  [c.261]

Легирование вольфрамом значительно измельчает избыточную карбидную фазу и, следовательно, повышает твердость этих сталей. Стали этой группы можно закаливать и в воде, и в масле (в последнем случае — до определенного сечения). Закалка вводе дает более высокую твердость. Так, у стали В1 твердость после закалки в воде (н отпуска при 100—120°С) может достигать значений порядка HR 67—68, а у стали ХВ5 — до HR 69—70. При закалке же в масле (и таком же отпуске) получается твердость не выше HR 64—65. Такое различие объясняется те.м, что в первом случае получается меньше остаточного аустенита, а образовавшийся в самом начале мартенсит не успевает отпуститься при ускоренном охлаждении в интервале мартгн-ситно го П ревращения .  [c.416]

Именно большое количество избыточной карбидной фазы (при всех режимах термической обработки) и делает сталь высокоизносоустойчивой, Способность этих карбидов частично переходить в раствор и в тем большей степени, чем выше нагрев под закалку, позволяет, изменяя температуру закалки, изменять свойства стали и ее поведение при термической обработке.  [c.435]

Для быстрорежущих сталей и для сталей типа XI2 большое значение имеет распределение карбидной фазы. Строчечное распределение карбидов, скопление Ка1рбидов, т. е. все то, что называется карбидной ликвацией , сильно ухудшает прочность стали. Чем больше уков, а следовательно, чем меньше сечение металла (заготовки, прутка), чем сильнее раздробляются скопления карбидов, тем лучше качество стали (рис. 327, а, б). Поэтому основательную проковку следует рекомендовать в тех случаях, когда штамп имеет крупные размеры. Уковка в этом случае достигается попеременной осадкой и вытяжкой. Однако и в этом случае не всегда удается устранить в необходимой степени карбидную ликвацию .  [c.437]

П )оведение стали Х6ВФ при термической обработке такое же, как и у сталей типа XI2, однако повышение температуры закалки не приводит к такому резкому растворению карбидной фазы, как у сталей типа XI2 (рис. 328). Поэтому эта сталь обычно закаливается с 1000°С 10 (для получения макси-  [c.437]

Из изложенного следует, что области применения и режимы термической обработки сталей Х6ВФ и Х12Ф1 в общем похожи, только сталь Х6ВФ отличается более высокой прочностью, но меньшей износоустойчивостью. Последнее является следствием меньшего количества в ней карбидной фазы.  [c.438]

Карбидная фаза в легированных сталях. По отношению к углероду ле1 ирующие элементы иодразде,/1яются на дне группы  [c.136]

Быстрорежущие стали относятся к карбидному (ледебуритному) классу, Их фазовый состав в отожженном состоянии представляет собой ло ироваииый феррит и карбиды М С, Mo g, МС, M.fL. Основным карбидом быстрорежущей стали является MJZ, в котором также растворен ванадий. В феррите растворена большая часть хрома почти весь вольфрам (молибден) и ванадий находятся в карбидах. Количество карбидной фазы в стали Р18 достигает 25—30 и 22 % в стали Р6М5,  [c.299]

При насыщении Сг малоуглеродистых сталей образуется а-твердый раствор (25—50% Сг). При насыщении Сг средне- и высокоуглеродистой сталей в поверхностной зоне образуется тонкий (0,02—0,04 мм) карбидный слой 1(Сг, Ре). зСв1 с твердостью ЯР>1300 Мн/ж - в подслое образуется карбидная фаза 1(Сг, Fe), 3I. Зависимость твердости и глубины хромированного слоя от содержания С показана на рис. 10.19.  [c.149]

Если В стали имеется несколько карбидных фаз, то при введении нового, более эффективного карбидообразующего элемента, последний будет реагировать с С соединения, имеющего менее эффективный карбидообразователь. Например, в стали с карбидами Ред( У ,Мо)дС и Сг7Сд вначале V соединяется с С карбида Сг7Сд, а затем с С карбида Рбд( , Мо)дС. При этомСг и далее XV и Мо переходят в твердый раствор.  [c.165]

При содержании более 1,15—1.2% (I (стали У12А и У13А) дополнительно возрастает величина карбидной фазы часть карбидов выделяется по границам зерен и в виде полос вдоль направления пластической деформации, что на 20—40% снижает прочность по сравнению со сталью, содержащей 1,0 —  [c.237]

В сталях Х12Ф1 и Х12М карбидная фаза представлена карбидом Сг типа (Сг, Ре), Сд, а в стали Х12 присутствуют карбиды и цементит-ного типа (рис. 14.9).  [c.244]

Установлено, что область 1 отвечает зарождению карбидов, а 2 - росту карбидов. В обоих случаях сохраняется когерентность связи между карбидной фазой и матрицей. С позиции макротермодинамики структурообразование на стадии зарождения карбидной фазы и ее рост связаны с термодинамической самоорганизацией. Однако, переход от одной стадии к другой возможен только путем динамической самоорганизации структур. Это обусловлено тем, что возникшая при отпуске стали новая фаза (карбид) является подсистемой по отно-  [c.205]

Все расчетные данные сведены в таблицу 3.16. При расчете в качестве исходных экспериментальных данных были приняты параметры, характеризующие цикл III. Проведенный расчет пороговых значений содержания хрома в карбиде позволил определить время жизни карбидной фазы в изученной стали различной формы при температуре отггуска 550 С (длительность цикла перестройки структуры), а экспериментальные данные по изменению формы карбидной фазы с ростом длительности отпуска - тип диссипативных структур, самоорганизующихся при неравновесных фазовых переходах ТС—>ДС- ТС.  [c.210]

Стальные валки. Литейные стальные валки изготавливают из нелегированных и легированных сталей, содержащих 0,4 - 2,0% С. В зависимости от содержания углерода и легирующих элементов структура этих сталей изменяется от перлитно-ферритной до перлитной с включениями карбидной фазы. Валки из доэвтектоидных сталей имеют низкую износостойкость, но хорошо выдерживают ударные нагрузки. Валки из заэвтектоидных - более тверщых сталей подвергают сложной термообработке для размельчения карбидов, их сфероидизации с целью повышения вязкости стали. Для прокатки тонкого нержавеющего листа валки изготавливают из быстрорежущей стали Р18 методом ковки.  [c.330]


При скоплении ионов водорода вблизи дефектов структуры становятся возможными и процессы их ионизации со значительным увеличением объема газа и, следовательно, резким увеличением давления в наиболее слабых элементах кристаллической решетки и созданием условий для развития поверхностных тренщн. Механизм процесса на-водороживания сталей связан с тем, что химическое сродство водорода к углероду может приводить к восстановлению карбидных фаз углеродистых сталей. При высоких давлениях водорода и температурах 200-600 С создаются благоприятные термодинамические условия для реакции диссоциации цементита и обезуглероживания стали  [c.61]

Большинство исследователей считают азот главной причиной магнитного старения низкоуглеродистой электротехнической стали. При отжиге углерод, в отличие от азота, почти полностью выделяется в виде карбидной фазы, поэтому он в дальнейшем не участвует в старении. Причиной старения считают постепенное превращение нитрида FeigNa в нитрид FeiN.  [c.135]

Низколегированная сталь. Сталь 15Х1М1ФЛ, закристаллизованная под давлением 200 МНУм , по механическим свойствам не уступает катаной трубной стали того же состава и значительно превосходит литую обычными методами сталь Ств=800 МН/м2, б=8%- Кроме того, ее жаропрочность в 1,4 раза выше, чем у обычной стали. Это объясняется улучшением состояния границ, по которым идет более 85% общей деформации материала, а также увеличением количества свободной карбидной фазы в структуре [13]. Суммарная масса карбидного осадка, определенного при помощи метода электролитического растворения образцов, после нормализации от 960° С составила в среднем 3,66 /о от массы растворенного металла, а свободно затвердевшей стали 3,34%.  [c.137]


Смотреть страницы где упоминается термин Сталь Карбидная фаза : [c.417]    [c.106]    [c.357]    [c.5]    [c.434]    [c.124]    [c.221]    [c.344]    [c.135]    [c.257]    [c.167]    [c.129]    [c.265]    [c.538]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.333 ]



ПОИСК



Карбидная фаза в легированных сталях

Карбидные фазы

Определение карбидной фазы в аустенитных хромоникелевых сталях

Определение карбидной фазы в высокохромистых сталях

Определение карбидной фазы в углеродистых и низколегированных сталях

П фазы



© 2025 Mash-xxl.info Реклама на сайте