Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Четаева теорема (неустойчивости движений)

Четаева теорема (неустойчивости движений) 37  [c.391]

Прежде чем перейти к теореме Четаева о неустойчивости движения, необходимо дать дополнительное определения области F > О (см. 2.4). Совокупность значений переменных х , удовлетворяющих в области (7.1) неравенству V х, t) О, называется областью F > О, а поверхность V х, i) = Q — границей последней. Для функции V х, t), зависящей явно от t, граница области  [c.220]


Теорема Четаева о неустойчивости движения. Если дифференциальные уравнения возмущенного движения таковы, что можно найти функцию V, ограниченную в области V О, существующей в сколь угодно малой окрестности пуля переменных Х - при всех t производная которой V в силу этих уравнений была бы определенно-положительной (функцией в области V О, то невозмущенное движение неустойчиво.  [c.220]

Теорема (Четаева о неустойчивости). Если дифференциальные уравнения возмущенного движения таковы, что существует функция V xi Ж2,..., Хт) такая, что в сколь угодно малой окрестности (1) существует область V > О и во всех точках области V > О производная V в силу этих уравнений принимает положительные значения, то невозмущенное движение неустойчиво.  [c.525]

Теоремы Ляпунова о неустойчивости движения обобщены Н. Г. Четаевым, доказавшим следующую теорему  [c.38]

Одно из направлений посвящено изучению устойчивости положений равновесия механических систем. При этом в зависимости от поставленной задачи применяются теорема Лагранжа, критерий Сильвестра положительной определенности квадратичной формы, теорема Четаева о неустойчивости положения равновесия исследуется устойчивость стационарных движений.  [c.60]

Частоты собственные 459 Четаева теорема о неустойчивости невозмущенного движения 439, 440 — — — положения равновесия консервативной системы 441 Число степеней свободы системы 178  [c.496]

Еще в 1892 г. А. М. Ляпунов в своей знаменитой диссертации Общая задача об устойчивости движения поставил вопрос об обращении теоремы Лагранжа. Этот вопрос до сих пор полностью не решен. Частичное решение этого вопроса дают две теоремы Ляпунова и теорема Четаева, в которых устанавливаются некоторые достаточные условия для неустойчивости положения равновесия.  [c.197]

При достаточно малых по модулю значениях и и I производная Г будет не знакоопределенной, а только знакопостоянной функцией переменных ци t. Поэтому, пользуясь выбранной фунцией V (2.54), мы не можем применить теоремы Ляпунова об асимптотической устойчивости II неустойчивости движения. Ненрименима к ней и теорема Четаева о неустойчивости движения. Воспользуемся теоремами Красовского. В качестве многообраапя К возьмем совокупность точек, для которых и Ф О, i = О (на плоскости (i, и) это ось и). Покажем, что многообразию К не принадлежат целые траектории системы. Для этого внесем в уравнение движения (2.53) значения переменных i и и, определяющих К. При t = О и и О эти уравнения примут вид  [c.74]


Теорема Четаева о неустойчивости движения. Теорема. Если дифференциальные уравнения возмущенного движения таковы, что можно найти функцию V, ограниченную в области У>0, существующей в сколь угодно малой окрестности невозмущенного движения, производная которой dvidt, взятая в силу уравнений возмущенного движения, была бы определенно положительной в области 1/>0, то невозмущенное движение неустойчиво.  [c.579]

В работе [76] Неймарком доказана теорема, представляющая собой перенесение теорем Ляпунова об устойчивости и неустойчивости на точечные отображения. Нам в дальнейшем, однако, потребуется теорема о неустойчивости неподвиншых точек точечного отображения, аналогичная теорема Четаева о неустойчивости движения. Докажем следующую теорему, представляющую собой перенесение теоремы Четаева на точечные отображения.  [c.108]

Ляпунову принадлежат две теоремы о неустойчивости движения. В 30-х годах нашего столетия Четаев обобщил эти теоремы и доказал теорему, из которой как частный случай вытекают теоремы Ляпунова. Поэтому мы начнем с ия.11оя ения теоремы Четаева.  [c.49]

Как ужо отмечалось, теорема Четаева является обобщением двух теорем Ляпунова о неустойчивости движения. Принедем одну из iinv.  [c.51]

Теоремы о неустойчивости. В этом пункте рассмотрены три теоремы о неустойчивости движения, полученные Ляпуновым и Че-таевым. Исторически сначала были получены две теоремы Ляпунова. Эти теоремы были обобщены Четаевым, получившим теорему, которая нашла широкое применение при решении задачи об устойчивости в конкретных задачах механики, а также в теоретических исследованиях вопросов устойчивости. Мы сначала изложим теорему Четаева и затем выведем из нее обе теоремы Ляпунова о неустойчивости движения.  [c.524]

Глава 5 посвящена рассмотрению многомерных гамильтоновых систем. Здесь для 2я-периодической по времени гамильтоновой системы с двумя степенями свободы при помощи теоремы Четаева о неустойчивости доказаны утверждения о неустойчивости при наличии резонансов третьего и четвертого порядков и рассмотрены различные аспекты задачи об устойчивости движения в многомерных гамильтоновых системах. Излагаются результаты Арнольда по устойчивости для большинства начальных данных, формулируется и доказывается теорема Брюно о формальной устойчивости гамильтоновых систем, рассматриваются основные результаты исследований Нехорошева об оценке скорости диффузии Арнольда [78—81] в многомерных гамильтоновых системах, близких к интегрируемым.  [c.12]

Теорема Четаева. сли дифференциальные уравнения возмущенного движения позволяют найти функцию V (х), для которой в сколь угодно малой окрестности нуля существует область F О, и если производная V функции F, вычисленная в силу этих уравнений, положительна во всех точках области V > О, то певозмущенное движение неустойчиво.  [c.49]

Теорема Ч етаева —М о вч а на о неустойчивости ( I960). Для неустойчивости решения ueU по метрикам Ро, р необходимо и достаточно, чтобы существовал функционал Четаева И [ф] со следующими свойствами IV непрерывен по метрике ро, ограничен по метрике р, растёт со временем вдоль траектории движения в области W>0. Т. о., смысл теоремы состоит в том, что обеспечивается существование таких нач. возмущений, к-рые выводят систему из заданного режима движения.  [c.258]

Подобная постановка задачи возможна и в проблемах устойчивости движения сплошной среды, если надлежаш им образом ввести интегральные характеристикидвижения среды. В частности, эта идея получила развитие в работах А. А. Мовчана (1959) об устойчивости упругого тела. Вводя вспомогательное метрическое пространство и строя в нем соответ-ствуюш,ие функционалы, Мовчан доказал обш,ие теоремы об устойчивости, асимптотической устойчивости и неустойчивости процессов, обобш ающие соответствуюш,ие теоремы Ляпунова и Четаева. Он ввел (1960) две метрики и сформулировал теоремы об устойчивости процессов по двум метрикам. К этому же направлению относятся и работы В. М. Слободкина и Т. К. Си-разетдинова (1964—1965). Следует отметить, что вопрос о построении соот-ветствуюш их функционалов для решения конкретных задач теории упругости разработан ещ,е недостаточно и нуждается в дальнейших исследованиях.  [c.32]


Теорема Четаева. Если для дифференциальных ураьне ний возмущенного движения можно найти функцию, удовлепию- ряющую условиям I), 2) и 3), то невозмущенное движение неустойчиво.  [c.440]


Смотреть страницы где упоминается термин Четаева теорема (неустойчивости движений) : [c.589]    [c.376]    [c.581]    [c.46]   
Элементы теории колебаний (2001) -- [ c.37 ]



ПОИСК



Движение неустойчивое

Неустойчивость

Неустойчивость движения

Ра неустойчивое

Теорема Четаева о неустойчивости

Теорема Четаева о неустойчивости невозмущенного движения

Теорема движения

Теорема о неустойчивости

Теоремы о неустойчивости движения

Четаева теорема

Четаева теорема о неустойчивости невозмущенного движения консервативной системы



© 2025 Mash-xxl.info Реклама на сайте