Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бифуркация взаимная

На рис. 7.34 и 7.35 изображены фазы двух различных типов бифуркаций взаимно однозначного отображения, для которого / (х) 0. На рис. 7.34 изображена бифуркация, при которой происходит рождение или исчезновение двух циклов из двукратных неподвижных точек. Рис. 7.35 изображает бифуркацию смены устойчивости однократной неподвижной точки, при которой одновременно происходит рождение или исчезновение цикла двукратных неподвижных точек.  [c.287]


Серии бифуркаций и вложенные структуры. Рассмотрение взаимно однозначного отображения окружности на себя привело к понятию числа вращения Пуанкаре и сериям бифуркаций, вызываемым особым характером зависимости числа вращения от параметра. Аналогично исследование гладкого однозначного, но не взаимно однозначного отображения прямой в прямую  [c.172]

При выходе мультипликаторов периодического движения за границы единичной окружности в точках ехр( га) при а ф Отг, тг/2, 2тг/3 из периодического решения появляется (или в нем исчезает) двумерный инвариантный тор — по образному выражению А. А. Андронова с цикла слезает шкура (см. рис. 15.11). При этом движение из периодического становится квазипериодическим. Подобная бифуркация наблюдается в системе двух связанных автогенераторов при переходе из режима взаимной синхронизации в режим биений (см. гл. 16).  [c.321]

Переход к стохастичности через бесконечную цепочку бифуркаций удвоения периодического движения является довольно типичным для диссипативных систем [18, 19]. Объясняется это тем, что многие диссипативные системы, в том числе и высокого порядка (с многомерным фазовым пространством), вблизи границы перехода описываются с достаточной степенью точности гладким не взаимно однозначным одномерным отображением (рис. 22.66). Природу этого явления мы обсудим в следующем параграфе. Здесь же приведем два примера, иллюстрирующие рассматриваемый путь перехода диссипативной системы к стохастическому поведению.  [c.479]

В некоторых экспериментах может происходить взаимная синхронизация осцилляторов, и в результате взаимного затягивания двух частот возникает одна общая частота. Соответствующий предельный цикл может затем претерпевать серию бифуркаций удвоения, приводящую в конечном счете к хаосу. Согласно интерпретации, предложенной автором этой книги, поведение системы в таких случаях определяется небольшим числом параметров порядка, и последовательные удвоения периода происходят в пространстве небольшой размерности соответствующих параметров порядка, число которых не меньше трех. Во введении уже говорилось о том, что такие удвоения периода удобно описывать дискретными отображениями. Но существует и другое описание — с помощью дифференциальных уравнений, например уравнения Дуффинга  [c.309]

Теперь рассмотрим оставшиеся возможности для изменения периодического движения Г, т. е. те, при которых наруилается существование гладкого взаимно однозначного отображения секущей. Для таких изменений есть следующие возможности замкнутая кривая Г стягивается в точку, на ней появляется состояние равновесия, она уходит в бесконечность ). Замкнутая кривая может стянуться только к особой точке — состоянию равновесия — и поэтому этот случай уже был изучен при рассмотрении бифуркаций состояний равновесия. Он соответствует переходу через бифуркационную поверхность Л/, . Второй случай новый, хотя он тоже связан с бифуркацией состояния равновесия, но не был замечен, поскольку раньше рассмотрение относилось только к окрестности состояния равновесия и не выходило за ее пределы. Перейдем к его рассмотрению. Третий случай оставим без внимания ввиду очевидности связанных с ним изменений. В рассматриваемом случае при бифуркационном значении параметра имеется состояние равновесия О и фазовая кривая Г, выходящая и вновь входящая в него. Пусть это состояние равновесия простое, типа О ". Так как фазовая кривая Г выходит из О" , то она лежит на инвариантном многообразии S,,, а так как она в него еще и входит, то она принадлежит еще и многообразию S l,. Отсюда следует, что многообразия Sp и 5 пересекаются по кривой Г. Соответствующая картинка представлена на рис. 7.14. Как нетрудно понять, пересечение поверхностей S,, и не является общим случаем и при общих сколь угодно малых изменениях параметров динамической системы должйо исчезнуть. Это означае т, что в пространстве параметров этому случаю вообще не отвечают области, а, как можно обнаружить, в общем случае только некоторые поверхности на едирплцу меньшей размерности. Таким образом, исследование этой бифуркации периодического движения свелось к следующему вопросу когда фазовая кривая, идущая из простого седлового дви-  [c.262]


Пусть со не меняется и не происходит бифуркаций слияния неподвижных точек. Тогда возможные изменения будут состоять только в изменениях неподвижных точек и расположениях сепаратрисных кривых. При этом седло-вые точки должны оставаться седловыми. А узлы могут переходить в фокусы и обратно. Фокус может сменить устойчивость, и при этом от него отделится либо обычный, либо стохастический синхронизм. При смене взаимного расположения сепаратрис может произойти возникновение стохастического синхронизма. Эта бифуркация в суженном виде будет в дальнеЙ1ием рассмотрена отдельно. Сейчас же ограничимся ее изображением на рис. 7. ПО.  [c.364]

Б е н а р а, при подогреве горизонтального слоя жидкости снизу (см. Бифуркация). При подогреве снизу плоского слоя жидкости развивается т. ы. конвективная неустойчивость, связанная с тем, что молекулярный теплоперенос не в состоянии обеспечить температурный баланс между нагретой нида. поверхностью и охлаждённой верх, поверхностью слоя. Всплывающий в результате действия архимедовой силы нагретый (более легкий) элемент жидкости вытесняет холодную жидкость, заставляя её двигаться вниз. В результате в слое устанавливается стационарное вращение элементов жидкости, к-рое при визуализации выглядит как структура упорядоченно вложенных роликов или валов. Ориентация валов в достаточно большом горизонтальном слое произвольна и зависит лишь от случайных нач. условий. Характерный масштаб зависит от толщины слоя II параметров жидкости. В жидкостях, где существенна зависимость параметров от темп-ры, существующие на нач. этапе развития неустойчивости валы с разл. ориентацией в результате эффекта взаимной синхронизации образуют связанное состояние — решётку с шестигранными ячейками. Возбуждения с любыми др. масштабами (отличными от наблюдаемого) подавляются в результате конкуренции.  [c.412]

Задание Aq, Л, удовлетворяющих бифуркационным условиям, означает, согласно (3.24), выбор F, Re. Тогда бифуркационное значение 5,( (,) подсчитывается по формуле (3,25). Бифуркационные изменения в системе могут происходить как при положительных, так и при отрицательных значениях q q > О, Л, > О либо С() 4- 2 < О, Л, < 0 каждому из этих двух случаев соответствует одно положительное и одно отрицательное значение Лд. Oi-сюда следуют выводы 1) -q > О, т. е. бифуркационные значения плотностей жидкости в областях G,, G.. превышают соответствующие плотности основного течення 2) взаимная ориентация поперечных (вдоль OY) скоростей основного потока, т. е, знаки и, и и , не влияет на возникновение бифуркационной ситуации 3) согласно оценкам величин Лц, существует нижняя граница значений числа Re > О, при которых может наступить бифуркащ1я 4) бифуркационное значение массовой силы может быть как положительным, так и отрицательным 5) если наряду с и q параметры основного течения в области G, заданы, то после подсчета 5,( о) получим из формулы S, = 1-с,-ь 2аг(П ,-П )р бифуркационное значение комплекса а(П , -П ), входящего в условие (3,17), (3.18) функционирования у-области, В особой точке при е = s >Q возможны бифуркации двух типов 1) сложное состояние равновесия седло-узел , получающееся при  [c.92]

В [29, с. 7-44] обсуждены проблемы, связанные с формированием автоструктур (не зависящих от начальных и граничных условий локализованных образований) в неравновесных диссипативных средах, и исследована динамика пространственных ансамблей таких структур. В частности, проведен анализ простой модели — одномерного ансамбля не взаимно связанных структур, представляющих собой цепочку, состоящую из элементов, динамика которых описывается одномерным отображением типа параболы. Напомним, что такое отображение описывает динамику самых различных физических систем, демонстрирующих при изменении параметра цепочку бифуркаций удвоения периода. Пусть параметры цепочки выбраны так, что в первом элементе реализуется режим регулярных колебаний периода Т. При некотором номере ] элемента режим одночастотных колебаний становится неустойчивым и возникает режим удвоенного периода, затем и он теряет устойчивость и т. д. вплоть до установления режима хаотических колебаний. Если каждый из элементов — автогенераторов — находился в режиме стохастических колебаний, то при движении вдоль цепочки наблюдается развитие хаоса — интенсивность колебаний увеличивается, а в спектре уменьшаются выбросы (спектр сглаживается ). В цепочке описанных автогенераторов ван-дер-полевского типа имел место пространственный переход к хаосу через квазипериодичность сначала наблюдался квазимонохроматический режим, сменявшийся затем режимом биений с большим числом гармоник при дальнейшем движении вниз по потоку этот режим переходил в слабо хаотический. Далее хаос развивался, интенсивность колебаний возрастала, но при достаточно больших j она уже не изменялась — устанавливался режим пространственно однородного хаоса.  [c.527]



Смотреть страницы где упоминается термин Бифуркация взаимная : [c.264]    [c.387]    [c.143]    [c.311]    [c.320]   
Синергетика иерархии неустойчивостей в самоорганизующихся системах и устройствах (0) -- [ c.0 ]



ПОИСК



Бифуркация

Бифуркация взаимная синхронизация двух осцилляторов



© 2025 Mash-xxl.info Реклама на сайте