Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жаропрочные стали химический состав

Оловянные бронзы имеют высокие антифрикционные свойства и коррозионную стойкость. Бронзы алюминиевые и кремнистые обладают высокими механическими свойствами и коррозионными свойствами, дешевле оловянных. Марганцовистые бронзы имеют хорошую коррозионную стойкость и повышенную жаропрочность. Бериллиевые бронзы после термообработки приобретают прочность, сопоставимую с прочностью стали. Химический состав типовых марок меди и ее сплавов приведены в табл. 12.8.  [c.454]


Из углеродистой стали изготовляют водяной экономайзер, экраны и барабаны котельных агрегатов, работающих при температуре до 450°С. При температуре более-450°С прочность углеродистой стали резко снижается. Поэтому для изготовления деталей, работающих при более высокой температуре, применяют специальную жаропрочную сталь, в состав которой вводят небольшое количество молибдена, хрома,, никеля и других химических элементов для придания металлу определенных свойств. Такая сталь называется низколегированной.  [c.78]

Химический состав и назначение мартенситных жаропрочных и жаростойких сталей  [c.206]

Виды сталей практически все применяют для получения заготовок обработкой давлением углеродистые и легированные конструкционные высоколегированные коррозионно-стойкие, жаростойкие и жаропрочные инструментальные и д р, Марки, химический состав и свойства этих сталей приводятся в соответствующих стандартах и справочниках [2,4].  [c.88]

В справочнике приведены химический состав, механические и физические свойства, режимы термической обработки и названия большинства углеродистых, легированных и высоколегированных сталей, применяемых в настоящее время в мировой практике. Содержатся основные данные о конструкционных, инструментальных, нержавеющих, кислотоупорных, теплостойких и жаропрочных талях двенадцати стран Европы, Америки и Азии (ФРГ, США, Бельгия, Англия,  [c.268]

Химический состав хромоникелевых жаропрочных сталей  [c.157]

Химический состав 206 Хромоникелевые стали жаропрочные —  [c.444]

Химический состав 157 Хромоникелевые стали жаропрочные  [c.444]

Тонколистовая коррозионно- и жаростойкая и жаропрочная сталь (ГОСТ 5582—75) горячекатаная в листах толщиной от 1,5 до 3,9 мм по размерам ГОСТ 19903—74 и холоднокатаная — от 0,7 до 3,9 мм ло ГОСТ 19904—74 изготовляется из стали марок, химический состав которых определен ГОСТ 5632—72 и механические свойства — ГОСТ 5582—75 (табл. 23) для листов, подвергнутых умягчающей термической обработке.  [c.100]

Число марок жаропрочных аустенитных сталей -в СССР и в зарубежных странах весьма велико — отчасти потому, что марки различных стран полностью или с самыми незначительными отклонениями дублируют друг друга. За последнее десятилетие состав практически применяемых аустенитных сталей стабилизировался.. Химический состав и основные показатели длительной прочности (при 700—725° С) типичных жаропрочных сталей аустенитного класса приведены в табл. 40 [ , 143, 156]..  [c.155]


Химический состав коррозионностойких, жаростойких и жаропрочных сталей и сплавов и их примерное назначение приведены в ГОСТ 5632—72 химический состав теплоустойчивых сталей, их примерное назначение, а также механические свойства сортовой горячекатаной и кованой стали, теплоустойчивой и жаропрочной — в ГОСТ 20072—74 и ГОСТ 10500—63.  [c.522]

МЕХАНИЧЕСКИЕ СВОЙСТВА И ХИМИЧЕСКИЙ СОСТАВ ВЫСОКОЛЕГИРОВАННЫХ ЖАРОПРОЧНЫХ И НЕРЖАВЕЮЩИХ СТАЛЕЙ, ИСПОЛЬЗУЕМЫХ ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБ (США)  [c.181]

Химический состав высоколегированных коррозионностойкой, жаростойкой и жаропрочной сталей  [c.47]

Химический состав жаропрочных сталей и сплавов приведен в табл. 8.6, а механические свойства и детали, изготовляемые из конструкционных сталей специального назначения.— в табл. 8.7.  [c.421]

Химический состав (по легирующим элементам) и свойства жаропрочных сталей при температуре 600 С  [c.304]

Химический состав (по легирующим элементам) и пределы длительной прочности Оюо некоторых жаропрочных сталей  [c.308]

Особенности сварки жаропрочных и коррозионно-стойких аусте-нитных сталей рассмотрены в гл. 8. При ручной дуговой сварке этих сталей покрытыми электродами прежде всего необходимо обеспечить требуемый химический состав металла шва. Для этого с целью уменьшения угара легирующих элементов применяют электроды с фтористо-кальциевым (основным) покрытием. Сварку ведут корот-  [c.126]

Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длительной коррозионной прочности при незначительном увеличении предела текучести и временного сопротивления, и марганец. Они могут дополнительно легироваться молибденом, вольфрамом, ниобием, титаном, бором, иодом и др. Так, микролегирование бором, а также редкоземельными и некоторыми шел очно-земельными металлами повышает такие характеристики, как число оборотов при кручении, пластичность и вязкость при высоких температурах. Механизм этого воздействия при микролегировании основан на рафинировании границ зерна и повышении межкристаллитной прочности. Химический состав и структура этих сталей весьма разнообразны.  [c.175]

Прочность межатомных связей у большинства металлов недостаточна для обеспечения жаропрочности и ее можно увеличить вводя в химический состав стали более тугоплавкие металлы. Если же говорить о жаропрочных сплавах, то у них за основу берут такие тугоплавкие металлы, как хром, никель, молибден и т. д.  [c.139]

Химический состав в % и примерное назначение некоторых жаропрочных и жаростойких аустенитных сталей  [c.9]

Химический состав припоев для пайки жаропрочных сталей и сплавов, используемых при прессовой сварке-пайке (ПСП)  [c.380]

Химический состав высоколегированных жаропрочных сталей для паропроводов тепловых электростанций  [c.314]

Легированные конструкционные стали, обладающие в активных водородсодержащих средах требуемыми механическими свойствами временным сопротивлением, пределом текучести, вязкостью, достаточной жаропрочностью. Особый химический состав сталей позволяет им при высоких температурах и давлениях сохранять некоторую условную или абсолютную стойкость против воздействия водорода. Водород реагирует с углеродом, содержащимся в карбиде железа, с образованием метана в результате происходит охрупчивание, падение прочности (в том числе когезивной, межзе-ренной), и при одновременно действующей растягивающей нагрузке может произойти катастрофическое разрушение. Обычно для ограничения таких явлений проводится легирование хромом, образующим более стойкие кар< иды, в меньшей степени взаимодействующие с водородом.  [c.234]

Во всех сортах котельной стали содержится небольшое, строго ограниченное количество углерода, марганца и кремния, а также неудаленные остатки вредных примесей — серы и фосфора. Сталь, содержащая только указанные элементы, называется углеродистой. Однако прочность углеродистой стали резко снижается при температуре более 450° С. Поэтому для изготовления деталей, работающих при более высокой температуре, применяют специальную — жаропрочную сталь, в состав которой вводят небольшое количество молибдена, хрома, никеля и других химических элементов для придания металлу определенных свойств. Такая сталь называется легированной.  [c.84]


Химический состав жаропрочных сталей с интерметаллидиым упрочнением  [c.166]

Электроды покрытые для сварки коррозионно-жаростойких и жаропрочных сталей — мартенситного, мартенситно-ферритного, ферритного, аустеиитно-ферритного и аустенитного классов. Электроды поставляются но ГОСТ 10052—75 31 тина по гарантированному химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла (табл. 42). Полный химический состав наплавленного металла приведен в ГОСТ 10052—75. Приближенные его значения можно определить расшифровкой названий типов электродов, пользуясь данными, нриведенньши на с. 10.  [c.66]

Химический состав типичных жаропрочных сталей с 12% Сг приведен в табл. 39. Из них оптимальной жаропрочностью и в особенности релаксационной стойкостью обладает -сталь 18Х12ВМБФР (ЭИ-993) в результате введения ниобия и микролегирования бором.  [c.153]

Проведенные исследования позволили разработать новую хро-моникельмарганцевую жаропрочную сталь аустенитного класса, содержащую небольшое количество никеля [28 ]. Химический состав стали следующий 0,3—0,45% С, доО,35 % Si, 10,0—12,5% Сг, 11,5 -13,5% №, 6—11% Мп, 3,2 -4,2% А1, 1,4—2,0% V. Высокая жаропрочность разработанной стали связана с образованием гетерогенной структуры С мелкодисперсным выделением двух упрочняющих фаз интерметаллического соединения NiAl.H карбидов ванадия. Присутствие этих фаз в стали установлено рентгеноструктурным фазовым анализом. Исследовали микроструктуру и прочностные свойства стали после различных режимов термической ебработки. Образцы были изготовлены -из проката трех опытных плавок стали (№ 1, 2, 3, табл. 47). Изучалось влияние температуры и времени выдержки при закалке и старении на твердость и длительную прочность стали.  [c.171]

В связи с возможным использованием для паропроводов острого пара 12%-ных хромистых феррито-мар-тенситных сталей,в частности стали 1Х12В2МФ (ЭР1756), для литой арматуры могут быть применены упрочненные 12% -ные хромистые феррито-мартенситные стали ХИЛА и Х11ЛБ. По уровню жаропрочности эти литейные стали занимают промежуточное положение между сталями перлитного и аустенитного классов, а по окалиностойко-сти они значительно превосходят стали перлитного класса. Эти стали для литья нашли применение в конструкциях паровых турбин мощностью 200 и 300 Мет. Химический состав и механические свойства литых перлитных феррито-мартенситных и аустенитных сталей приведены соответственно в табл. 4-8 и 4-9. В этих таблицах приведены также характеристики сталей для литья, применяемых в ФРГ и США,  [c.157]

ЦИйа Протяженностью 120 мм. Паропровод изготовлен из труб диаметром 426X17 мм. Материал — сталь 12Х1МФ. Гиб выполнен в горячем состоянии на ЗиО. Он эксплуатировался при температуре пара 570° С. Трещина начиналась на внутренней поверхности и имела протяженность по этой поверхности около 450 мм. Она была расположена вблизи нейтральной линии гиба около вершины овала с наименьшим радиусом кривизны, т. е. в месте действия наиболее высоких дополнительных растягивающих напряжений на внутренней поверхности от изгиба, возникавшего вследствие того, что под действием внутреннего давления форма сечения гиба стремилась перейти из овальной в круглую. Овальность гиба после обнаружения трещины была в пределах нормы. Рядом со сквозной трещиной имелось много трещин меньших размеров, заполненных окислами. Химический состав и механические свойства трубы и гиба отвечают требованиям ЧМТУ 670-65, по которым была поставлена труба. Структура нерекомендованная — феррит и глобулярные карбиды по границам зерен. Разрушение произошло по границам зерен (рис. 7-8). Гиб разрушился вследствие того, что фактические местные напряжения превышали расчетные, а жаропрочность металла была пониженной.  [c.391]

Наибольшее распространение в промышленности среди высоколегированных жаропрочных сталей получили высокохромистые стали, содержащие 10—13% Сг (см. табл. 11). Номенклатура марок и химический состав этих сталей также обусловлен ГОСТ 5632— 72. Для повышения сопротивления ползучести в состав сталей дополнительно вводят Мо, W, V, Nb, Ti, При таком высоком содержании хром и других ферритообразующих элементов и низком содержании углерода стали становятся мартенситио-фФ" ритнымн. Количество феррита неве  [c.398]

Основные жаростойкие сплавы созданы на основе железа и никеля. Химический состав высоколегированных сталей и сплавов на железной, железоннкелевой и никелевой основах, предназначенных для работы в коррозионно-активных средах и при высоких температурах, приведен в ГОСТ 5632—72. Согласно этому стандарту жаростойкие (окалиностойкие) сплавы относятся к группе II и характеризуются как стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовы средах при температуре выше 550 °С, работающие в иенагруженном или слабонагружениом состоянии. Жаропрочные стали и сплавы, отнесенные к группе III, также должны обладать достаточной жаростойкостью.  [c.408]

Содержит около 600 марок сталей и сплавов чёрных металлов. Для каждой марки указаны назначение, химический состав, механические свойства в зависимости от состояния поставки, температуры, режимов термообработки, поперечного сечения заготовок, места и направления вырезки образца, описан комплекс технологических свойств. Приведены системы маркировки сталей по Евронормам и национальным стандартам. В приложениях даны физические свойства механические свойства в зависимости от температур отпуска, испытания, ковочных жаропрочные свойства марки, характеристики и области применения электротехнических и транспортных сталей зарубежные материалы, близкие по химическому составу к отечественным перевод твёрдости по Бринеллю, Роквеллу, Виккерсу и Шору соответствие различных шкал температур.  [c.4]


В связи с этим сварочные материалы, предназначенные для жаропрочных перлитных сталей, должны обеспечивать химический состав металла шва, близкий к химическому составу основного металла. Если невозможен подогрев и термическая обработка (отпуск) сварных соединений, могут быть использованы сварочные материалы, обеспечивающие получение металла шва на никелевой основе (Св-08Н60Г8М7), поскольку диффузионная подвижность элементов в аустените при 450. .. 600 °С значительно меньше, чем в сталях перлитного класса.  [c.320]

Химический состав и жаропрочность металла сварных швов на стали IX18HI0T, выполненных под флюсом АНФ-5, в аргоне и углекислом газе  [c.340]


Смотреть страницы где упоминается термин Жаропрочные стали химический состав : [c.292]    [c.12]    [c.68]    [c.153]    [c.533]    [c.194]    [c.195]    [c.25]    [c.269]   
Справочник азотчика том №2 (1969) -- [ c.275 , c.278 ]



ПОИСК



Жаропрочность

Жаропрочные КЭП

Жаропрочные Химический состав

Жаропрочные стали 115, 156—177

Состав для стали

Стали для клапанов и жаропрочные стали Основные обозначения, химический состав, механические свойства, режимы термической обработки и применение сталей

Стали химический состав



© 2025 Mash-xxl.info Реклама на сайте