Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лучепреломление двойное в электрическом поле

Двойное лучепреломление в электрическом поле (явление Керра)  [c.527]

Наряду со знаменитым явлением Фарадея (вращение плоскости поляризации в магнитном поле, 1846 г.), которое было первым исследованным магнитооптическим эффектом, явление Керра сыграло важную роль в обосновании электромагнитной теории света. В более поздние годы (1930 г. и позже) удалось наблюдать двойное лучепреломление под действием электрического поля в парах и газах. Измерения эти гораздо труднее измерений з жидкостях вследствие малости эффекта, зато теория явления приложима к ним с меньшими оговорками.  [c.528]


Рис. 27.2. Схема расположения приборов для наблюдения двойного лучепреломления в электрическом поле. Рис. 27.2. <a href="/info/4764">Схема расположения</a> приборов для наблюдения <a href="/info/10084">двойного лучепреломления</a> в электрическом поле.
Таким образом, частичная деполяризация света объясняется анизотропией молекул, т. е. теми же свойствами среды, что и явление двойного лучепреломления в электрическом поле (эффект Керра, см. 152). Открывается возможность установить зависимость между постоянной Керра и величиной деполяризации. Опыт подтвердил эту зависимость.  [c.589]

Рис. 19.2. Схема наблюдения двойного лучепреломления в электрическом поле Рис. 19.2. Схема наблюдения <a href="/info/10084">двойного лучепреломления</a> в электрическом поле
В ячейке Поккельса используется изменение оптической анизотропии в кристаллах под влиянием внешнего электрического поля. Луч, распространяющийся вдоль оптической оси кристалла, не испытывает двойного лучепреломления. При приложении электрического поля вдоль оси излучения на выходе кри-  [c.30]

В электрическом поле поверхность индикатрисы (трехосного эллипсоида) искажается в общем случае происходит как изменение ее ориентации в пространстве, так и изменение размеров осей эллипсоида (двойного лучепреломления). Уравнение (1.1) принимает вид  [c.16]

Двулучепреломление PZN при помещении кристалла в электрическое поле исследовалось в работе [6]. На рис. 3.5 (кривая 1) показана зависимость индуцированного двойного лучепреломления Атг от напряженности электрического поля при комнатной температуре. Известно, что величина двупреломления в сегнетоэлектриках со структурой перовскита пропорциональна квадрату полной поляризации [7]. На начальном участке зависимости Ага = = j E) выполняется квадратичный закон и, следовательно, имеет место линейная зависимость поляризации от поля (кривые 2 и 5). В области полей 7 кВ/см, благодаря переходу неполярных областей в сегнетоэлектриче-ское состояние и увеличению степени ориентации ди-  [c.69]


Схема наблюдения эф- Двойное лучепреломление в электрическом поле  [c.195]

Двойное лучепреломление в электрическом поле лазерного излучения  [c.198]

Изменение двойного лучепреломления или светорассеяния в электрическом поле как функции состава и структуры ИЖ  [c.42]

Не меньший интерес у исследователей, занимающихся изучением растворов высокомолекулярных соединений и различных суспензий, вызывают электрооптические и магнитооптические методы анализа. Среди электрооптических эффектов нашли применение 1) электрооптиче-ский эффект, связанный с изменением показателя преломления среды под действием статического электрического поля (эффекты Поккельса и Керра) 2) эффект двойного лучепреломления 3) электрический дихроизм 4) увеличение рассеяния света при помещении кюветы с раствором в электрическое поле. Исследование электрооптических эффектов в коллоидных растворах показало, что они зависят от концентрации электролитов, валентности ионов, pH среды, наличия поверхностно-активных веществ и т. д. Поэтому электрооптические методы могут оказаться исключительно важными при изучении электрохимических свойств коллоидных растворов. При этом особенное зна-  [c.127]

Поляризационные приборы широко используются во многих областях науки и техники. Исследования кристаллов и определение их оптических свойств производятся при помощи поляризационных микроскопов. Большое распространение получил поляризационный оптический метод определения напряжений в деталях машин и инженерных сооружениях. Благодаря способности оптически активных веществ поворачивать плоскость поляризации концентрации их растворов (например сахара) быстро и просто определяются посредством сахариметров, круговых поляриметров и др. Значительное развитие получают приборы, использующие явление двойного лучепреломления в электрическом поле и явление вращения плоскости поляризации в магнитном поле.  [c.202]

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ.  [c.236]

В [96] предложено использовать эффект Керра для бесконтактного оптического измерения распределения асимметричного электрического поля в жидких диэлектриках между электродами различной формы. Как известно, в электрическом поле жидкости в той или иной степени становятся средами с двойным лучепреломлением, т, е. показатели преломления жидкости для света, поляризованного вдоль электрического поля и перпендикулярно к нему, отличаются на некоторую величину Ап = кВЕ , которая зависит от длины волны излучения постоянной Керра В и напряженности электрического поля Е. Таким образом, суммарный фазовый сдвиг б между параллельно и перпендикулярно поляризованными компонентами зондирующего излучения после прохождения объекта будет пропорционален интегралу от Е по прямой, т, е, проекции  [c.100]

В. Явление Керра, вызванное электрическим полем мощного импульса света. Выше речь шла о возникновении двойного лучепреломления в изотропной среде под действием постоянного электрического поля. Такое же явление наблюдается и в переменном электрическом и даже в поле световой волны.  [c.531]

Более быстрое включение может быть осуществлено при помощи электрооптических затворов, основанных на эффектах Керра и Поккельса. Используемая для этой цели ячейка Керра представляет собой кювету, заполненную нитробензолом и помещенную между обкладками конденсатора. Иногда конденсатор помещается внутрь кюветы. Если приложить к конденсатору постоянное напряжение, то нитробензол становится двоякопреломляющим. В этом случае показатели преломления вдоль электрического поля п и перпендикулярно полю nj. становятся различными. При падении на ячейку плоскополяризованного луча с плоскостью поляризации под углом 45° к направлению электрического поля в ячейке вследствие двойного лучепреломления происходит разложение луча на два взаимно перпендикулярных, распространяющихся с различными скоростями. По выходе из ячейки лучи имеют некоторую разность фаз ф и, складываясь, образуют эллиптически-поляризованный луч. Эксцентриситет эллипса и его ориентация зависят от ф, значение которой определяется приложенной разностью напряжения V. При определенном напряжении Уц можно достигнуть разности фаз 180°, при этом выходящий луч будет иметь плоскость поляризации, повернутую на 90° по отношению к плоскости поляризации входящего в ячейку луча.  [c.30]


Эффект Поккельса. В некоторых кристаллах при наложении внешнего электрического поля возникает двойное лучепреломление, которого нет в отсутствие поля, причем разность показателей преломления необыкновенного и обыкновенного лучей пропорциональна первой степени напряженности электрического поля. Это явление называется эффектом Поккельса.  [c.286]

Поток излучения от источника света 1 (ртутная лампа сверхвысокого давления) после конденсора 13 и диафрагмы 12 проходит через сменный светофильтр 2 (максимумы пропускания при 0,436 и 0,546 мкм), поляризатор 3 и исследуемый объект 4. Последний ориентирован так, что направления колебаний в лучах о и е составляют углы 45° с направлением плоскости поляризации поляризатора 3. Выходящий из объекта 4 эллиптически поляризованный свет попадает на пластинку 5, изготовленную из кристалла АОР. Пластина 5 вырезана перпендикулярно оптической оси. Свет, падающий по нормали к ее поверхности, не испытывает затем двойного лучепреломления. При приложении к пластинке 5 переменного электрического поля в направлении, параллельном направлению распространения лучистого потока и оптической оси кристалла АОР, последний становится двухосным новые оптические оси образуют углы 45°, симметричные прежним направлениям оптической оси следовательно, проходящий через пластину 5 свет претерпевает двулучепреломление. Возникающая при этом разность фаз (или разность хода) зависит линейно от напряженности электрического поля. После прохождения объекта 4 свет становится эллиптически поляризованным (рис. 4.5.15,/). При прохождении пластины 5, вследствие колебаний приложенного  [c.316]

Прохождение света через плоскопараллельную пластинку (гиротропная среда). В отличие от предыдущего раздела, будем считать диспергирующую среду 2 гиротропной. Однако принимать во внимание двойное лучепреломление не будем это справедливо, если среда изотропна или когда плоскость г = О перпендикулярна оптической оси. Тогда при нормальном падении на плоскость г=О линейно поляризованного монохроматического света напряженность электрического поля в пластинке, подобно (10.35а), равна  [c.271]

Из-за квадратичной зависимости — л,, от Е двойное лучепреломление в электрическом поле ие зависит от 1гаправления поля.  [c.290]

Вместе с тем явление Керра нашло за последние годы ряд чрезвычайно важных научных и научно-технических применений, осгю-ванных на способности его протекать практически безынерционно, т. е. следовать за очень быстрыми переменами внешнего поля. Таким образом, и по теоретической, и по практической ценности явление двойного лучепреломления в электрическом поле принадлежит к числу крайне интересных и важных. Как уже упоминалось (см. 2), о желательности постановки подобных опытов писал еще Ломоносов (1756 г.) о неудаче попытки обнаружить, влияет ли электризация на преломляющую способность жидкости, сообщает Юнг (1800 г.) и лишь в 1875 г. были выполнены опыты Керра, надежно установившие явление. Керр показал, что многие жидкие диэлектрики становятся анизотропными под действием электрического поля. Опыты с жидкими диэлектриками имеют решающее значение, ибо для жидких веществ деформация, могущая возникнуть под действием электрического поля (электрострикция), не вызывает двойного лучепреломления ), так что в опытах с жидкостью мы имеем электрооптические явления в чистом виде. Описанный Керром эффект стал первым доказательством того, что оптические свойства вещества могут изменяться под влиянием электрического поля.  [c.528]

Аналогично возникновению двойного лучепреломления в электрическом поле возможно также и создание искусственной анизотропии под действием магнитного поля. Если анизотропные молекулы обладают дополнительно постоянным мдгнитным моментом (парамагнитное тело), подобно тому, как молекулы, будучи анизотропными, обладают постоянным электрическим моментом, то их поведение под действием магнитного поля должно представлять аналогию с явлением, наблюдаемым в электрическом поле. В отсутствие внешнего магнитного поля хаотическое расположение молекул обеспечивает макроскопическую изотропию среды, несмотря на анизотропию отдельных молекул. Наложение достаточно сильного магнитного поля, воздействующего на магнитные моменты молекул, ориентирует их определенным образом относительно этого внешнего поля. Ориентация анизотропных молекул сообщает всей среде свойства анизотропии, которые можно наблюдать обычным способом. Действительно, удалось обнаружить возникковенпе двойного лучепреломления под действием сильного магнитного поля, направлен-  [c.536]

Наличие дисперсии света является одним из фундаментальных- затруднений первоначальной электромагнитной теории света Мак- свелла. Эта теория, связавшая воедино электромагнитные и опти- ч/ ческие явления, представляла громадный шаг вперед и стала научным обобщением крупнейшего масштаба. Трприя )я1 гвр.п.пя-позволила раскрыть смысл явления Фарадея (вращение плоскости поляризации в магнитном поле), открытого почти за четверть века до того она, несомненно, стимулировала дальнейщие изыскания в области магнето- и электрооптики, приведшие к двум важным открытиям Керра двойного лучепреломления в электрическом поле и поворота плоскости поляризации при отражении от намагниченного ферромагнетика. Наконец, теория Максвелла устранила ряд неясностей и противоречий упругой оптики.  [c.539]

Полученные результаты имеют не только научное, но и практическое значение, потому что именно этими временами определяется время существования двойного лучепреломления в электрическом поле (явление Керра, см. 152) и, следовательно, эти времена определяют минимальную экспозицию при использовании ячейки Керра в качестве фотографического затвора. Такой затвор теперь находит широкое применение при исследовании различных бы-стропротекающих процессов и имеет другие практические применения.  [c.598]


Другим примером искусственной анизотропии является анизотропия, возникающая в веществе под влиянием внещнего электрического поля. Этот вид анизотропии был открыт в 1875 г. Керром и носит название эффекта Керра. Вначале двойное лучепреломление в электрическом поле было обнаружено в твердых диэлектриках при помещении их между пластинками заряженного конденсатора. Однако было сомнение в том, что электрическое поле в данном случае играет косвенную роль и двойное лучепреломление появляется в результате механической деформации, вызванной полем (явление электрострикции >). Непосредственное влияние электрического поля было установлено после того, как явление двойного лучепреломления было обнаружено в жидкостях, в которых статическое сжатие не вызывает оптической анизотропии. Впоследствии (1930) двойное лучепреломление под действием электрического поля было найдено в парах и газах. Хотя эти измерения гораздо сложнее, чем измерения в жидкостях, поскольку эффект мал, однако теория эффекта Керра применима к ним с меньщнми допущениями.  [c.65]

Действие ячейки Керра основано на способности некоторых веществ (нитробензол, хлороформ, ортонитротолуол и др.) в электрическом поле приобретать свойство двойного лучепреломления. Ячейка Керра представляет собой герметическую кювету К с плоско-параллельными прозрачными стенками и с металли-  [c.363]

На рис. 3.6 представлены полученные в работе [8] зависимости индзгцированного двойного лучепреломления от напряженности электрического поля в широком интервале температур.  [c.70]

Рис 3 6. Зависимость индуцированного двойного лучепреломления от напряженности электрического поля в кристалле PbsZnNbjO. при различных температурах 18]. 1 — —2, 2 — 8 5 — 22 4 — 37 5 — 52. в —68,8 7 — 85,9 в — 122 9—140°С Световая волна распространялась вдоль [001], электрическое поле было приложено вдоль [100].  [c.71]

При исследовании эффекта Керра важен вопрос о длительности тех процессов, которые приводят к возникновению или исчезновению двойного лучепреломления. Схема опыта Абрагама и Лемуана (1899), позволяющего измерить время, в течение которого молекулы успевают ориентироваться во внешнем электрическом поле, приведена на рис. 19.3.  [c.68]

Рис 3 5. Зависимость i — индуцированного двойного лучепреломления г, 3 — поляризации от напряженности электрического поля в кристалле PbjZnNbjOj [6] Кривые I и г получены при 20 "С, кривая 3 при —60 °С  [c.70]

Квадратичный электрооптический эффект, или эффект Керра — появление двойного лучепреломления у изотропного вещества в однородном электрическом поле. Внешнее электрическое поле Е ориентирует молекулы, обладающие электрическим моментом (диполь-иым, квадрупольным и т. п.), в результате возникает анизотропия н показатели преломления п ] (вдоль поля) и п (перпендикулярно полю) становятся различными пц — Ял = КпР, разность хода необыкновенного и обыкновенного лучей равна Д = KnlE , здесь К — постоянная Керра, п — показатель преломления в отсутствии поля, I — длина оптического пути.  [c.775]

Двойное лучепреломление в изотропной среде может возникнуть не только в постоянном внешнем электрическом поле, но и в переменном с частотами вплоть до оптических. Благодаря развитию лазерной техники появилась возможность получать оптическое излучение, в котором напряженность электрического поля достигает очень больших значений. Схема опыта по наблюдению эффекта Керра, вызванного электрическим полем лазерного излучения, показана на рис. 4.16. Луч зондирующего света (Х= 500 нм) проходит через ячейку К с исследуемой жидкостью и после отражения от полупрозрачной пластинки 5 направляется на фотоумножитель (ФЭУ). Пр скрещенных поляризаторах Р, и Р2 свет не может попасть в ФЭУ. Когда через ячейку проходит мощный импульс инфракрасного поляризованного излучения лазера , жидкость становится анизотропной, зондирующий свет выходит из ячейки эллиптически поляризованным и попадает в ФЭУ. Измеряя разность фаз ф между необыкновенным и обыкновенным лучами и зная среднеквадратичную напряженность поля лазерного излучения (< >У , можно найти значение постоянной Керра в поле оптической частоты и сравнить его со значением в постоянном электрическом поле. В недипольных жидкостях эти значения практически совпадают. Однако в жидкостях с дипольными молекулами постоянная Керра уменьшается при переходе к оптическим частотам (у нитробензола приблизительно в 100 раз), так как дипольная молекула не успевает переориентироваться в такт с изменениями напряженности внешнего поля.  [c.197]

Эффекты магнитных воздействий в жидкостях мало-численнее, возможно, вследствие меньшей изученности. Известны механический эффект — магнитострикция магнитотепловые эффекты оптические эффекты изменение оптической плотности, коэффициентов рассеяния и отражения, эффект Фарадея [ф=/1(Я)], эффект двойного лучепреломления, Коттон—Мутона 1А 1 /г где АК— разность хода лучей], расш,епление спектральных линий в результате эф кта Зеемана, дисперсия магнитооптического вращения, круговой дихроизм в продольном магнитном поле электрические эффекты, связанные с изменениями электропроводности и диэлектрической проницаемости в магнитном поле такие магнитные эффекты, как ядерный магнитный и электронный парамагнитный резонансы.  [c.33]

Наряду с естественным двойным лучепреломлением можно создать искусственную анизотропию при помощи наложения на прозрачное вещество электрического поля (явление Керра). Прозрачное вещество, помещенное в магнитное поле, приобретает способность вращения плоскости поляризации света, распространяющегося вдоль линий сил магнитного поля (явление Фарадея). Оба эти эффекта широко используются для различных технических целей. Одно из важнейших явлений, возникающих под действием света в веществе, представляет собой явление фотоэффекта, заключающееся в вырывании зарядов из поверхности вещества наружу (внешний фотоэффект) или в изменении сопротивления тел при освещении (фотопроводимость) или, наконец, в создании э. д. с. на границе разнородных материало в (вентильный фотоэффект). Подробнее см. фотоэлементы стр. 704.  [c.339]

Приёмники ультразвука. Наиболее распространёнными П. у. являются электроакустические преобразователи. К ним относятся в первую очередь пьезоэлектрические преобразователи, магнитострикционные преобразователи, полупроводниковые и пьезополупроводниковые преобразователи, электростатические приёмники и электродинамические приёмники. Приёмники этого типа преобразуют акустич. сигнал в электрический крайне малая инерционность позволяет воспроизводить временную форму сигнала и, следовательно, получать сведения о его фазе, частоте и спектре. В зависимости от конструкции приёмного элемента, а также от функциональных особенностей применяемой с приёмником электронной схемы электроакустические преобразователи могут служить приёмниками звукового давления, колебательной скорости, ускорения, смещения. Термические приёмники используются в основном для измерения интенсивности звука они имеют значительную инерционность. Благодаря большой инерционности усреднённые по времени показания дают приёмники механич. типа — Рэлея диск и радиометр. Первый служит для измерения амплитуды колебательной скорости, второй — для измерения радиационного давления, т. е. плотности звуковой энергии и интенсивности звука. Звуковое давление и интенсивность звука могут измеряться также различными оптич. методами (напр., по дифракции света на ультразвуке), основанными на изменении показателя преломления среды под действием акустич. колебаний, возникновении двойного лучепреломления и других оптич. эффектов в звуковом поле.  [c.269]


Д. B. Б и M , Двойное лучепреломление в электрическом и магнитном поле, УФН 13, 209 (1933) Rev. Mod. Phys. 4, 133 (1932)  [c.481]


Смотреть страницы где упоминается термин Лучепреломление двойное в электрическом поле : [c.294]    [c.534]    [c.115]    [c.445]    [c.241]    [c.115]    [c.140]    [c.166]    [c.212]    [c.64]    [c.259]   
Задачи по оптике (1976) -- [ c.143 ]



ПОИСК



Двойни

Двойное лучепреломление

Двойное лучепреломление в электрическом поле (явление Керра)

Двойное лучепреломление в электрическом поле. Модуляция светового потока, основанная на эффекте Керра

Дву лучепреломление

П двойной

Электрическое двойное лучепреломление

Электрическое поле



© 2025 Mash-xxl.info Реклама на сайте