Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютона опыты

В основе классической механики Галилея — Ньютона, кроме понятия о движении, изучением которого механика занимается, лежит вводимое аксиомами Ньютона понятие о силе, где сила определяется как абстрактно представленная причина изменения состояния движения. Понятие о силе возникло из примитивного опыта и наглядного представления о мускульном усилии человека. Это представление, будучи распространено на все виды движений, вызвало значительные затруднения при стремлении ученых-механиков создать логически строгую систему механики вследствие того, что понятие о силе само по себе связано с большим количеством не всегда ясных, а иногда и противоречивых опытных соотношений. Поэтому еще до работ Ньютона некоторые исследователи [как, например, Декарт (1Й6 —1650)]  [c.14]


Аксиомы, или основные законы, механики. Основные понятия кинетики — сила и масса — вводятся в механику путем соответствующих определений, а соотношения между ними устанавливаются системой аксиом, или законов, которые кладутся в основу механики. Эти аксиомы устанавливаются в результате обобщения многочисленных наблюдений и опытов над движением материальных тел. Наиболее распространенной является классическая система таких аксиом, данная И. Ньютоном и опубликованная им в 1687 г. (см. главу I, 1)-В современной формулировке эти аксиомы (законы) могут быть изложены в виде следующих положений.  [c.170]

Ньютоном (1672 г.) экспериментально было установлено, что показатель преломления стеклянной призмы зависит от длины волны падающего света, т. е. п == / (Я). Схема опыта Ньютона представлена на рис. 11.1. Две призмы расположены так, что пх преломляющие ребра перпендикулярны друг другу. Такие скрещенные призмы разлагают проходящий пучок света в спектр в двух взаимно перпендикулярных направлениях. Цветная полоса,  [c.264]

Метод скрещенных приборов. Первые серьезные опыты по изучению аномальной дисперсии были выполнены Кундтом и Вудом. Они использовали усовершенствованный метод скрещенных призм Ньютона. Экспериментальное наблюдение аномальной дисперсии  [c.265]

Опыты показали, что в действительности скорость звука больше, чем она получается по формуле Ньютона. Это расхождение Ньютон объяснял наличием в воздухе водяных паров.  [c.567]

Второй закон Ньютона. Изучая на опыте взаимодействие различных материальных точек с окружающими телами, мы обнаруживаем, что та зависит от величин, характеризующих как состояние самой материальной точки, так и состояние окружающих тел.  [c.40]

Третий закон Ньютона. Во всех случаях, когда в опыте участвуют только два тела А и В и тело А сообщает ускорение телу В, обнаруживается, что и тело В сообщает ускорение телу А. Отсюда мы заключаем, что действия тел друг на друга имеют характер взаимодействия.  [c.41]

Второй закон Ньютона. Связь между силой и ускорением тела устанавливается на основании опыта. Подействуем с помощью растянутой пружины сначала на одну тележку и вычислим по пути si, пройденному за время t (рис. 22), модуль а ускорения ее движе ия.  [c.19]

Рассматриваемые сложные вопросы разложения излучения в спектр блестяще изложены в книге Г.С. Горелика Колебания и волны . Чрезвычайно интересна острая дискуссия нескольких студентов и преподавателя о современном значении опыта Ньютона, впервые разложившего призмой солнечный свет, а необходимость прагматического подхода к выбору способа разложения в спектр доказана остроумным сравнением отношения математика и вязальщицы к выбору оптимального соотношения между числом пальцев в каждой перчатке, если известно только, что пара перчаток имеет 10 пальцев. Для математика эквивалентны распределения 5 + 5 и, например, 3 + 7, а вязальщица отнюдь не свободна в этом выборе — никто не купит у нее пару перчаток с неравным числом пальцев на каждой руке. Эти примером мы хотим показать исключительное значение теоремы Фурье в оптике и многих других разделах физики.  [c.70]


Как возникают кольца Ньютона Как можно в этом опыте измерить длину волны Чем отличаются картины в отраженном и проходящем свете  [c.457]

Правильная последовательность научного исследования состоит в предварительных наблюдениях, в накоплении экспериментальных фактов, затем в объединении результатов опытов и наблюдений на основании обобщающих выводов, связанных с введением некоторых абстрактных представлений, и, наконец, в проверке на практике обобщающих выводов из абстрактных представлений. Так, например, на основании наблюдений и обобщающих выводов великий английский ученый Исаак Ньютон нашел закон всемирного тяготения, затем этот закон был проверен в астрономической практике, а проверка привела к открытию Нептуна в XIX в. и Плутона в XX в.  [c.20]

Тогда получим новый способ определения массы, опирающийся исключительно на третий закон Ньютона. Наблюдения и опыты подтверждают возможность этого определения массы.  [c.232]

Ниже цитируется приведенное Ньютоном в Принципах натуральной философии описание его опытов с маятниками, поставленных для выяснения вопроса, существуют ли колебания в значениях отношения гравитационной массы к инертной.  [c.421]

Всякое свободное тело, находящееся в сфере земного притяжения, падает вертикально вниз. Опытами Галилея и Ньютона доказано, что если пренебречь сопротивлением воздуха, то скорость свободно падающего тела в каждую секунду увеличивается на одну  [c.109]

Опыт должен состоять в установлении распределения слоев выделившегося серебра в толще эмульсии. Трудность этого наблюдения, связанную с малыми расстояниями между пучностями и узлами, Винер обошел, применив прием малого наклона , впервые указанный Ньютоном (см. 26). Система стоячих волн получалась Винером в воздухе при отражении монохроматического света от металлического зеркала. На рис. 5.3, представляющем схему подобного опыта, показано положение очень тонкого (около светочувствительного слоя, образующего малый угол ф с поверхностью зеркала ММ. Стеклянная пластинка, на которую нанесен  [c.116]

Объяснение образования колец во времена Ньютона представляло большие трудности. Гук видел причину образования колец в наличии двух отраженных пучков разной интенсивности. Ньютон подробно исследовал образование колец и установил зависимость размеров колец от кривизны линзы. Ньютону было ясно, что в указанном эффекте проявляются свойства периодичности света. В связи С этим он ввел понятие о приступах легкого отражения и легкого прохождения , испытываемых световыми частицами. В этом понятии заключается попытка компромисса между волновыми и корпускулярными представлениями, характерная для воззрений Ньютона. Лишь много позднее (1802 г.) Юнг, введя понятие интерференции, дал объяснение кольцам Ньютона. Юнг объяснил также наличие черного центрального пятна с помощью представления о потере полуволны вследствие различия условий отражения (исходя, конечно, из представления об упругих волнах) (1804 г.). Юнг подкрепил свое объяснение опытом, заполнив пространство между пластинкой из флинта (пз) и линзой из крона (я,) маслом с показателем преломления Пз, так что Пз > а > Пх, и получив вместо темного пятна светлое.  [c.125]

Нетрудно видеть, что условие, облегчающее наблюдение колец Ньютона, состоит в очень малом наклоне поверхности линзы к поверхности пластинки. Подобный прием был много лет спустя применен в опытах Винера. Как уже упоминалось в 23, в одном из опытов, особенно отчетливо определяющих положение пучностей и узлов по отношению к поверхности пластинки, Винер, пользуясь расположением, данным Ньютоном, получил стоячие волны в пространстве между линзой и пластинкой и наблюдал следы пучностей в виде концентрических колец, подобных кольцам Ньютона.  [c.126]

Инвариантность уравнений механики по отношению к этим преобразованиям, которую нетрудно проверить, и есть математическое выражение принципа относительности механики, экспериментальным обоснованием которого служит согласие законов механики Ньютона с опытом ).  [c.443]

На основании своих сравнительно немногочисленных опытов Ньютон пришел к ошибочному заключению, что относительная дисперсия (см. 86) различных прозрачных веществ одинакова.  [c.541]

Установление закона силы может происходить путем непосредственного обобщения результатов опыта, заключающегося в определении закона силы по наблюдаемому движению. Примером может служить только что приведенный вывод закона всемирного тяготения Ньютона из экспериментально установленных Кеплером кинематических законов движения планет ( 48).  [c.27]


Решение этих вопросов можно надеяться найти лишь в том случае, если, исходя из ныне существующей и проверенной опытом концепции, основа которой положена Ньютоном, станем постепенно ее совершенствовать, руководствуясь фактами, которые ею объяснены быть не могут.... Здесь мы стоим на пороге области, принадлежащей другой науке — физике, и переступать его не дает нам повода сегодняшний день .  [c.478]

В поисках решения Ньютон обращается к предположению о существовании особой среды — эфира, по которому распространяется действие тяготения. Однако о его свойствах он не может сказать ничего определенного Нет достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны . После ряда безуспешных попыток он отказывается от гипотезы эфира Причину свойств тяготения я до 54  [c.54]

АВТОР. Слова Ньютона надо воспринимать с учетом психологии великого ученого, стремящегося каждый свой шат тщательно перепроверить, подкрепить опытом и вычислениями. Он использовал разные способы проверить то же самое, ибо испытующему обилие не мешает . Естественно, что ему претили догадки тех или иных ученых, взятые, что называется, с потОлка . Сюда можно отнести, например, гипотезу Аристотеля о том, что различие в цвете связано с различием в количестве темноты, примешиваемой к солнечному свету фиолетовый цвет возникает при наибольшем добавлении темноты к свету, а красный — при наи-  [c.10]

В начале XIX в. идеи Гюйгенса начали превалировать над идеями Ньютона. Опыты по интерференции света, впервые поставленные Юнгом, было трудно и практически невозможно интерпретировать, исходя из корпускулярной теории. Френель развил тогда свою замечательную теорию упругого распространения световых волн, и с этого момента доверие к концепции Ньютона стало непрерывно уменьшаться. Одним из больших успехов Френеля было объяснение прямолинейного распространения света, интерпретация которого в теории испускания была чисто интуитивной. Когда две теории, основанные на идеях, кажущихся совершенно различными, объясняют с одинаковым изяществом одну и ту же экспериментально докаэан-ную истину, то всегда возникает вопрос, действительно ли противоположны обе точки зрения и не является ли эта противоположность лишь следствием того, что наши усилия синтезировать их оказались недостаточными. Такой вопрос не поднимался в эпоху Френеля представление о корпускулах света было признано наивным и отброшено.  [c.642]

Вопрос о равенстве нли различии инертной и гравитационной масс принадлежит к числу важнейших вопросов физики и решается экспериментальным путем. Как известно, первые такие эксперименты проводились еще Галилеем (опыты по определению временн падения различных тел с Пизанской башни) и Ньютоном (опыты с крутильным маятником). Проведенные к настоящему времени тщательные измерения (опыты Этвеша и др.) подтвердили равенство этих масс с точностью до 10 %. В то же время опытных фактов, противоречащих равенству инертной и гравитац1юнной масс, не обнаружено. Эти обстоятельства послужили основанием для того, чтобы признать утверждение о равенстве обеих масс справедливым и рассматривать его з качестве фундаментального свойства материи. В современной фнзнке данное положение играет роль постулата.  [c.532]

В основе динамики лежат законы, установленные путем обобщения результатов целого ряда опытов и наблюдений, посвященных изучению движения тел, и проверенные обширной общественнопроизводственной практикой человечества. Систематически законы динамики были впервые изложены И. Ньютоном в его классическом сочинении Математические начала натуральной философии , изданном в 1687 г. . Сформулировать эти законы можно следующим образом.  [c.181]

Создание основ динамики принадлежит великим ученым — итальянцу Галилео Галилею (1564—1642) и англичанину Исааку Ньютону (1643—1727). В знаменитом сочинении Математические начала натуральной философии , изданном в 1687 г., Ньютон в систематическом виде изложил основные законы так называемой классической механики. Эти законы, установленные на основании наблюдений и опытов Нью70на и его предшественников, являются объективными законами природы.  [c.5]

Область применения законов классической механики, созданнс Галилеем и Ньютоном, как показали новейшие открытия конца XIX и первой четверти XX вв., ограничена. Эти законы не согласуются с опытом при изучении движения тел, скорость которых одио1 о порядка со скоростью света.  [c.5]

В своих Prin ipia Ньютон дает разъяснения и определения основных понятий механики массы, времени, пространства, силы, а также устанавливает основные законы движения (аксиомы), которые были приведены в 1. На основании этих понятий и аксиом, представляющих собой обобщение многочисленных опытов и наблюдений, логически строится с помощью математического анализа вся система механики. Кроме создания системы механики, Ньютону принадлежит открытие закона всемирного тяготения, который лег в основу теоретической астрономии и небесной механики. В своих исследованиях Ньютон не пользуется методами открытого им анализа бесконечно малых, а употребляет главным образом геометрические методы, строя изложение по образцу Начал Евклида.  [c.12]

Ньютон образно сформулировал этот вопрос и свой ответ на йёго. Представим себе ведро с водой. Если мы будем вращать ведро вокруг вертикальной оси, неподвижной относительно звезд, то поверхность воды примет параболическую форму с этим все согласятся. Предположим, однако, что вместо вращения ведра мы каким-то образом привели звезды во вращение вокруг ведра, так что относительное движение осталось одно и то же. Ньютон считал, что если бы мы вращали звезды, то поверхность воды осталась бы плоской. Согласно этой точке зрения, существует абсолютное вращение и абсолютное ускорение. Из опыта мы не знаем, можно ли полностью описать и сопоставить с результатами локальных измерений в лаборатории все явления, происходящие с вращающимся ведром воды, никак не относя их к звездам.  [c.82]

Классические опыты принадлежат Ньютону, который воспользовался методом маятника, описанном в задаче 14.1. Среди других получивших широкую известность опытов следует в первую очередь отметить измерения, начатые Р. Этвёшем в 1890 г. и продолжавшиеся около 25 лет. Чтобы понять его остроумный метод, надо рассмотреть поведение маятника, подвешенного у поверхности Земли на широте 45° (рис. 14.1). На маятник действует сила тяжести Mrpg, направленная к центру Земли. На  [c.415]


Ньютон на основании своих опытов ошибочно полагал, что величина относительной дисперсии, входящая в расчет ахроматизированной системы, не зависит от материала линз, и пришел отсюда к выводу о невозможности построения ахроматических линз. В соответствии с этим Ньютон считал, что для астрономической практики большое значение должны иметь рефлекторы, т. е. телескопы с отражательной оптикой. Однако Эйлер, основываясь на отсутствии заметной хроматической аберрации для глаза ), высказал мысль о существовании необходимого разнообразия преломляющих сред и рассчитал, каким образом можно было бы коррегировать хроматическую аберрацию линзы. Доллон построил (1757 г.) первую ахроматическую трубу. В настоящее время имеются десятки сортов стекол с разными показателями преломления и разной дисперсией, что дает очень широкий простор расчету ахроматических систем. Труднее обстоит дело с ахроматизацией систем, предназначенных для ультрафиолетового света, ибо разнообразие веществ, прозрачных для ультрафиолета, ограничено. Удается все же строить ахроматические линзы, комбинируя кварц и флюорит или кварц и каменную соль.  [c.316]

Наряду с понятием о массе как мере инертности — инертной массе — в механике приходится иметь дело также с тяготеющей массой , входящей в формулировку закона всемирного тяготения. Как показали многочисленные опыты и в первую очередь оиыты самого Ньютона, численные величины инертной и тяготеющей массы для одного и того же тела равны между собой. Этот принцип эквивалентности инертной и тяготеюш ей масс был в дальнейшем обобщен и па область движений, требующих для своего рассмотрения применения специальной теории относительности (см. гл. XXXI).  [c.16]

Осиование теоретической механики составляют законы, или аксиомы, Ньютона. Эти аксиомы представляют собой постулаты, справедливость которых подтверждается многовековыми наблюдениями и опытом человечества.  [c.70]

Решение проблемы фундаментальных постоянных в целом невозможно без четкого понимания физической сущности отдельных физических констант, поэтому вторая часть книги посвящена этим вопрсюам. Между возникновением той или иной постоянной и ее измерением, осознанием ее действительного значения в физике часто лежит долгий путь. Во второй части систематизированы и объединены сведения о физических постоянных, о методах экспериментального определения их значений, выявлена принципиальная роль констант в становлении и развитии физической науки. Все это представляет, говоря словами И. Ньютона, тот запас опытов , который позволяет выполнить в дальнейшем (ч. Ill) анализ проблемы фундаментальных постоянных в целом. Отдельные параграфы второй части посвящены гравитационной постоянной G, константам молекулярной физики (постоянные 6  [c.6]

Прежде чем приступать к изложению идей специальной теории относительности Эйнштейна, процитируем замечание М. Планка о соотношении теории и эксперимента Экспериментатор — это тот, кто стоит на переднем крае, кто осу-щес1вляет решающие опыты и измерения. Опыт означает постановку вопроса, обраденного к природе, измерение означает принятие ответа, который дала природа. Но прежде чем поставить опыт, его нужно продумать, это значит — надо сформулировать вопрос, обращенный к природе, прежде чем оценить измерение, его нужно истолковать, т. е. надо понять ответ, который дала природа. Этими двумя задачами занимается теоретик [71]. Именно в интерпретации результатов измерений выявляется фундаментальная глубина теоретических выводов Эйнштейна. Они привели к кардинальному пересмотру казавшихся незыблемыми со времен Ньютона представлений о физическом пространстве и времени.  [c.131]

Световые корпускулы Ньютона не обладали осевой симметрией, но имели четыре разные стороны . Представим, что корпускула поворачивается вокруг оси (вокруг направления ее движения) последовательно на 90, 180, 270, 360 при этом она всякий раз будет повернута к наблюдателю новой стороной. Вывод об отсутствии осевой симметрии у световых лучей был сделан Ньютоном на основе опытов Гюйгенса по двойному лучепреломлению в двух последовательно расположенных кристаллах (мы упоминали об этих опытах в вводной беседе). В своей книге Оптика , вышедшей в 1704 г., Ньютон писал Не существует двух сортов лучей, отличаюш,ихся по своей природе один от другого так, что один постоянно при всех положениях преломляется обыкновенным способом, другой же постоянно во всех положениях — необыкновенным способом. Разница между двумя сортами лучей в опыте, указанном в 25-м вопросе (имеется в виду опыт Гюйгенса с двумя кристаллами.—Авт.), была только в положениях сторон лучей относительно плоскостей перпендикулярного преломления. Ибо один и тот же луч преломляется здесь иногда обыкновенно, иногда необыкновенно — сообразно положению его сторон относительно кристалла . Здесь содержится в неявном виде открытие поляризации света. Различным положениям сторон ньютоновских корпускул в современной оптике соответствуют различные ориентации плоскости поляризации плоскопо-ляризованного света, рассматриваемые относительно плоскости, проходящей через оптическую ось кристалла и направление светового луча.  [c.19]


Смотреть страницы где упоминается термин Ньютона опыты : [c.4]    [c.163]    [c.252]    [c.19]    [c.215]    [c.100]    [c.357]    [c.427]    [c.113]    [c.235]    [c.240]    [c.10]    [c.10]    [c.18]   
Динамика системы твёрдых тел Т.1 (1983) -- [ c.163 ]



ПОИСК



By опыт

Ньютон

Ньютона опыт с ведром

Опись



© 2025 Mash-xxl.info Реклама на сайте