Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электростанции тепловые паротурбинные

К комбинированным энергетическим парогазовым установкам следует отнести и сочетание обычной тепловой паротурбинной схемы с надстройкой из МГД-генератора. Включение магнито-гидродинамического генератора в общую схему тепловой электростанции позволяет, как показывает расчет, повысить общий к.п.д. установки до 55%, т. е. увеличить его против к.п.д. обычной парогазовой установки на 10%, а против к.п.д. чисто паротурбинного блока на 15—20%.  [c.276]


Задача 1. Алгоритм оптимизации непрерывно изменяющихся параметров реализуется применительно к задаче оптимизации термодинамических, расходных и конструктивных параметров тепловой электростанции с паротурбинными блоками мощностью 800 тыс. кет, имеющими весьма сложные схемы технических связей между отдельными узлами и элементами оборудования. Математическая модель такой установки вместе с табличными данными термодинамических свойств рабочих веществ занимает более 10 тысяч ячеек внутренней и внешней памяти ЭЦВМ. Время счета задачи при совместной оптимизации 20 термодинамических параметров находится в интервале 2—3 час машинного времени для случайно взятого исходного варианта и 0,3—1,0 час при обоснованно выбранном исходном варианте. Такой выбор всегда возмон<ен на основании инженерного опыта.  [c.34]

До настоящего времени основная часть (до 80%) электрической энергии вырабатывается на тепловых и атомных электростанциях. Ведущая роль этих электростанций сохранится и в будущем . Источниками тепловой энергии на таких электростанциях служат главным образом природное химическое топливо (уголь, нефть, газ) и ядерное горючее. В качестве энергетических установок на тепловых (и атомных) электростанциях служат паротурбинные установки (ПТУ). Широкое применение ПТУ в энергетике связано с их надежностью, большим ресурсом работы и отсутствием компрессора для сжатия рабочего тела — водяного пара до высоких давлений. Однако экономичность ПТУ ограничена. Даже при сверхкритических тепловых параметрах водяного пара эффективный к.п.д. ПТУ едва достигает 40%. К недостаткам ПТУ относятся также большой удельный расход тепла (около 2000 ккал/кВт-ч) на производство электроэнергии, большие габариты, значительный удельный вес (10 кг/кВт), невысокая надежность поверхностей нагрева парогенераторов, большие удельные объемы водяного пара в последних ступенях турбины, ограничивающие единичную мощность машины, большое время запуска (несколько суток), большие потери циркуляционной воды (до 3,6 кг/кВт-ч) в градирнях и др. Кроме того, мощные энергетические ПТУ, работающие на природном химическом топливе (уголь, мазут), являются крупными источниками вредных выбросов (пылевидные частицы, окислы азота, сернистые соединения) в атмосферу и тепловых выбросов в водоемы.  [c.4]


В настоящее время на тепловых паротурбинных электростанциях вырабатывается более 80 % электроэнергии, в качестве основных теплоносителей в промышленности и в быту используются пар и подогретая паром или продуктами сгорания горячая вода, получаемые в котельных установках (котлах). Широкое применение пара для производства электроэнергии, в технологических процессах и в быту определяет использование в котлах более 25 % всего добываемого топлива. Количество котельных установок различного назначения, конструкций и мощности в СССР составляет более 100 тыс. В зависимости от назначения на промышленных предприятиях применяются автономные производственные и отопительные котельные на органическом топливе (рис. В.2,а) и котлы, использующие теплоту отходящих газов и другие тепловые отходы технологических агрегатов (рис. В.2, б), а также котельные установки промышленных электростанций (рис. В.З).  [c.7]

В СССР для тепловых (паротурбинных) электростанций с мощностью энергетических агрегатов до 200 МВт применяют чаще всего барабанные котлы с естественной многократной циркуляцией, а также прямоточные котлы.  [c.189]

По количеству вырабатываемой энергии и установленной мощности первое место среди тепловых электростанций занимают паротурбинные, использующие органическое топливо (уголь, газ, мазут). Доля энергии, поставляемой тепловыми атомными станциями, работающими на ядерном топливе, пока еще невелика, однако она быстро увеличивается, особенно в европейской части СССР. К концу 80-х годов вклад ядерной энергии в энергобаланс страны должен значительно возрасти.  [c.5]

Газотурбинные установки применяют в основном на электростанциях, использующих газ и мазут. Особенно значительны потери тепла ГТУ с отработавшим газом турбин. Применение газотурбинных установок становится экономичным на крупных тепловых электростанциях в сочетании с мощными паротурбинными блоками. Тепловую электростанцию с паротурбинными и газотурбинными агрегатами, характеризующуюся общей тепловой схемой и совместным использованием тепловых потоков, называют парогазовой электростанцией.  [c.373]

Основой паротурбинной электростанции являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют паровую турбину. ПТУ - основной элемент ТЭС, ТЭЦ и АЭС.  [c.46]

С развитием электрификации и химизации в СССР роль теплотехники с каждым годом возрастает. Мощные паротурбинные установки на электростанциях с применением пара высоких параметров, внедрение комбинированных установок с одновременным использованием в качестве рабочих тел как водяного пара, так и продуктов сгорания, теплофикация городов, развитие реактивных двигателей и газотурбинных установок, отвод огромных тепловых потоков в ядерных реакторах для получения электроэнергии, переход к промышленному использованию магнитогидродинамического метода для непосредственного преобразования теплоты в электрическую энергию, широкое использование в народном хозяйстве холода и многие другие проблемы современной науки и техники необычайно расширили область теплотехники и все время ставят перед ней новые исключительно важные физические задачи.  [c.3]

Электростанция, на которой вырабатывается электрическая и тепловая энергия, называется теплоцентралью (ТЭЦ), в том случае, если вырабатывается только электрическая энергия, электростанцию называют конденсационной (КЭС). Температура воды, используемой для отопления, горячего водоснабжения и технологических нужд предприятий, должна быть не ниже 70—100°С. Следовательно, чтобы обеспечить указанную температуру охлаждающей воды на выходе из конденсатора паросиловой установки, необходимо увеличить температуру отвода теплоты Гг. Это возможно лишь при увеличении давления рг, т. е. путем создания некоторого противодавления на выходе из турбины. Как отмечалось, рациональное давление рг за турбиной или на входе в конденсатор паротурбинной установки современных КЭС составляет 4 КПа. В установках с противодавлением на ТЭЦ давление за турбиной рг поддерживается не ниже 100—150 КПа (0,10—0,15 МПа). Повышение рг, естественно, уменьшает работу расширения пара в турбине и приводит к снижению термического к. п. д. установки. В то же время степень, использования теплоты в цикле увеличивается.  [c.169]


Паротурбинные установки (ПТУ) широко применяются для привода электрогенераторов на тепловых электростанциях. По-видимому, в ближайшие десятилетия они будут оставаться основным видом тепловых двигателей для выработки электроэнергии.  [c.142]

В учебных лабораториях невозможно провести натурное исследование циклов паротурбинных установок — циклов тепловых (ТЭС) и атомных (АЭС) электростанций. Физическое моделирование работы ТЭС и АЭС в учебной лаборатории также невозможно, так как не удается создать маленькую турбину для лабораторий, у которой внутренний относительный КПД был бы таким же как у реальных турбин. Поэтому единственным реальным методом исследования циклов ТЭС и АЭС является метод математического моделирования. Кроме того, необходимо помнить, что при математическом моделировании резко расширяется число регулируемых параметров и диапазон их изменений. Например, в натурном эксперименте невозможно исследовать влияние типа турбины или размеров котельного агрегата на параметры установки, математическая модель позволяет это сделать в натурном эксперименте нельзя создавать аварийные ситуации (слишком высокая температура пара перед турбиной или очень большая конечная влажность пара), математическая же модель позволяет просчитать любой (даже не реальный) режим работы..  [c.241]

Тепловая электростанция, оборудованная паровыми турбинами, работающими по конденсационному циклу, называется конденсационной (КЭС). Тепловая электростанция с комбинированным производством электричес.кой энергии и теплоты в теплофикационных паротурбинных установках — это теплоэлектроцентраль (ТЭЦ). ТЭЦ отличается от КЭС наличием отводящих паропроводов к промышленным тепловым потребителям и специальными подогревателями сетевой воды, использующими регулируемые отборы пара из турбины.  [c.4]

Органическое топливо (газообразное, жидкое и твердое) широко используют в разного рода тепловых установках в топках паровых котлов паротурбинных электростанций, в промышленных печах, в камерах сгорания газовых турбин н воздушно-реактивных двигателей, в цилиндрах  [c.222]

ПГТУ — парогазотурбинная установка ПТУ — паротурбинная установка ПЭ — преобразователь энергии ПЭС — приливная электростанция РМ — расширительная машина РТ — рабочее тело ТВЭЛ — тепловыделяющий элемент ядерного реактора ТА — транспортный аппарат ТЭ — топливный элемент ТЭГ — тепловой электрогенератор  [c.194]

Конечно, паротурбинные установки, использующие такой перепад температур, будут и громоздкими и малоэкономичными по сравнению с обычно применяемыми на тепловых электростанциях. Но в целом ряде случаев, когда складываются особенно благоприятные условия — местные, экономические и т. д., — целесообразность таких установок будет несомненна.  [c.242]

Тепловые электростанции вырабатывают около 80% всей электроэнергии, расходуемой в народном хозяйстве (промышленностью, транспортом и бытовыми потребителями). Паротурбинные электростанции составляют в настоящее время подавляющую часть тепловых электростанций. Газовые турбины пока применяются на компрессорных станциях магистральных газопроводов и в некоторых отраслях промышленности. Они найдут широкое применение также и на электростанциях, когда возрастет мощность единичных агрегатов и надежность газотурбинных установок станет столь же высокой, как надежность паротурбинных.  [c.5]

Роль энергетики в народном хозяйстве СССР исключительно велика. Преобладающее значение среди электростанций СССР имеют тепловые электростанции. В особенности большое народнохозяйственное значение имеют районные паротурбинные электростанции, объединяемые в энергосистему.  [c.3]

Тепловое хозяйство паротурбинной электростанции  [c.21]

ТЕПЛОВОЕ ХОЗЯЙСТВО ПАРОТУРБИННОЙ ЭЛЕКТРОСТАНЦИИ  [c.21]

Рассмотрим паротурбинные установки, служащие для производства только электрической энергии. Чтобы достигнуть высокой тепловой экономичности таких установок с заданными начальными параметрами пара, необходимо глубокое понижение конечных параметров (конечного давления) рабочего процесса. По этой причине на современных паровых электростанциях, служащих для выработки только электрической энергии, применяются турбогенераторы с конденсацией пара при глубоком вакууме. При этом на установке сохраняется конденсат водяного пара, используемый для питания паровых котлов потери пара и конденсата на таких установках малы и при выводе показателей в данной главе они не- будут приниматься во внимание.  [c.29]

Подавляющая доля мощности тепловых электростанций падает на паротурбинные электростанции. Причинами широкого применения паровых турбин являются  [c.10]

Тепловые электростанции с паровыми поршневыми машинами в некотором количестве строятся для мощностей 100—300 кет (локомобильные электростанции). Станции с поршневыми двигателями внутреннего сгорания применяются, главным образом, для небольших мощностей вплоть до 1 тыс. кет. Такие станции на жидком или газообразном топливе по своей экономичности и простоте вполне могут конкурировать с малыми паротурбинными электростанциями.  [c.10]

Несмотря на то что в ближайшие годы мощности тепловых электростанций будут расти благодаря вводу крупных (300—800 Мет) паротурбинных блоков, увеличение доли газообразного и жидкого топлива в топливном балансе СССР создает благоприятные перспективы для внедрения ГТУ мощностью 50, 100 и 200 Мет.  [c.10]


Как видно из сказанного, получение электрической энергии на паротурбинной электростанции происходит в результате взаимных превращений трех видов энергии химической энергии топлива в тепловую, тепловой энергии в механическую и механической энергии в электрическую.  [c.6]

Во всех развитых странах возможное значительное повышение тепловой экономичности электростанций связывается с применением комбинированных термодинамических циклов — сочетанием паротурбинного цикла с различными высокотемпературными циклами (ГТУ, ПТУ на парах жидкостей с высокой температурой кипения, МГД-генераторы, ЭГД-генераторы, термоэмиссионные и другие преобразователи энергии).  [c.4]

Переход с параметров 90 ата, 500° на 130 ата, 565° дает на каждый 1 ООО ООО кет установленной мощности экономию топлива в 220 тыс. тонн в год переход с параметров 130 атл, 565° на 240 ата, 580° дает дальнейшую экономию в топливе в 195 тыс. тонн. Экономия в топливе указана в условных единицах, исходя из предположения, что, сгорая, 1 кг топлива выделяет 7000 ккал. В действительности же средняя калорийность топлива ниже и цифры, показывающие действительную экономию топлива, будут выше указанных. На фиг. 1 показана принципиальная тепловая схема сравнительно простой паровой электростанции. Современные паротурбинные установки часто выполняются по значительно более сложным схемам число подогревателей питательной воды достигает 8—10, в схему включаются испарители добавочной питательной воды, так как котлы очень высокого давления могут питаться только чистым дестиллятом. Турбины больших мощностей, работающие паром высоких параметров, состоят из нескольких цилиндров, через которые пар проходит последовательно. В наиболее современных установках пар, пройдя через цилиндр высокого давления, возвращается в котельную, где повторно подогревается до начальной температуры или близкой к ней, после чего направляется в цилиндр среднего давления для дальнейшего расширения. Намечаются к строительству паротурбинные установки с двумя промежуточными перегревами пара.  [c.8]

Таким образом, основным типом тепловой электростанции является паротурбинная станция. Только для станций малой мощности может итти речь о применении иных двигате-лей, кроме паровых турбин.  [c.10]

Производство электроэнергии в России осуществляется в основном тепловыми электрическими станциями — крупными промышленными предприятиями, на которых неупорядоченная форма энергии — тепло — преобразуется в упорядоченную форму — электрический ток. Неотъемлемым элементом мощной современной электростанции является паротурбинный (или газотурбинный) агрегат —совокупность паровой (или газовой) турбины и приводимого ею электрического генератора — электрической машины, преобразующей механическую энергию вращения ротора в электрическую энергию. В свою очередь турбина  [c.11]

В семилетнем плане развития народного хозяйства СССР на 1959—1965 гг. предусмотрено доведение выработки электроэнергии в 1965 г. до 500—520 млрд. квт-ч, преимущественно на тепловых паротурбинных электростанциях. В связрт с этим производство паровых турбин в 1965 г. возрастет по сравнению с 1958г. в 2,5 раза.  [c.394]

Тепловая экономичность. Тепловая экономичность электрической станции характеризуется КПД электростанции Для паротурбинных электростанций различают КПД брутто и КПД нетто. КПД брутто определяют по количеству выработанной энергии выр без учета расхода энергии на собственные нужды электростанции 5(,н. Этот расход обусловлен расходом энергии на привод вспомогательных механизмов в процессе выработки энергии и теплоты. КПД нетто характеризуется количеством энергии, отпущенной со станции Эогп- При определении КПД электростанции по годовой выработке энергии  [c.173]

Принципиальная тепловая схема характеризует сущность основного технологического процесса преобразования и использования энергии рабочего тела тепловой электростанции. На паротурбинной электростанции эта схема включает котельный и турбинный агрегаты с электрическим генератором и конденсатором теплообменники — для отпуска тепла внещним потребителям (сетевые подогреватели, паропреобразователи), для использования тепла пара, отработавшего в турбине, внутри электростанции (регенеративные подогреватели), для подготовки добавочной и питательной воды котлов (испарители, деаэраторы). Принципиальная тепловая схема включает также насосы для перекачки рабочего тела (теплоносителя), как-то питательные насосы котлов, испарителей и паропреобразователей конденсатные насосы турбин, сетевых подогревателей, регенеративных подогревателей.  [c.146]

Близость к месторождению топлива. Большая часть тепловых паротурбинных электростанций использует в качестве топлива уголь, однако все большее применение получают газ и мазут. Уголь, как правило, транспортируется экономично железнодорожным путем на значительное расстояние — сотни и тысячи километров. Транспорт низкосорт-  [c.327]

Паротурбинная установка (ПТУ) работает по замкнутому циклу если пренебречь утечками, то в установке циркулирует одно и то же количество пара. ПТУ устанавливаются на конденсационных электростанциях (КЭС) и вырабатывают электроэнергию, на теплоэлектроцентралях (ТЭЦ) и вырабатывают кроме электричеекой энергии тепловую, включаются в технологический цикл производства, используя пар, образующийся в технологических процессах, для привода других машин и механизмов (воздуходувки, насоса, гребного винта и пр.).  [c.178]

Одним из путей повышения экономич5ности работы тепловых электростанций при одновременном улучшении их манев ренных характеристик является разработка парогазовых циклов. Сочетание паротурбинной части установки с газотурбинной дает возможность повысить к. п. д. на 8—5% в зависимости от схемы. Первый энергоблок с парогазовым циклом мощностью 200 МВт, с высоконапорным генератором паропроизводитель-ностью 450 т/ч, паровой турбиной мощностью 150 МВт и газовой турбиной мощностью 35/45 МВт успешно эксплуатируется на Невинномысской ГРЭС.  [c.116]

Удельный вес природного газа и мазута в топливном балансе тепловых электростанций в 1975 г. составлял соответственно 25,7 и 28,8%. В перспективе доля газомазутного топлива будет снижаться и целесообразно выработать наиболее рациональные пути его использования на ТЭС. Представляет определенный интерес проработать вариант перевода ТЭС, работающих на газомазутном топливе, в маневренный режим пок рытия полупи-ковой части графика электрических нагрузок. При этом, конечно, необходимо будет провести мероприятия по приспособлению оборудования к такому режиму, чтобы не снизилась надежность его работы. Такой режим работы паротурбинного оборудования приведет к некоторому повышению удельного расхода топлива на отпущенный 1 кВт-ч, но с учетом того, что число часов использования установленной мощности будет при этом снижаться, общий расход газомазутного топлива умень-щится. Это позволит использовать освобожденное топливо для высокоманевренного оборудования, которое должно работать в пиковой части графика электрической нагрузки.  [c.118]


Освещаются вопросы выбора теплового оборудования, рассматриваются полная тепловая схема станции, компоновка главного здания станции, техническое водоснабжение, топливоподача, золоулавливание и золоудаление. Излагаются основные положения для выбора площадки и размещения на ней сооружений электростанции Расс.иатриваются экономические показатели электростанций, расход энергии на механизмы собственных нужд, капитальные затраты и вопросы определения себестоимости энергии. Основное внимание уделено паротурбинным электростанциям средней и большой мощности. Коротко излагаются данные по бинарным и газотурбинным установкам, а также по управлению и автоматизации работы электростанции.  [c.2]

В тепловом процессе станции участв ует ряд элементов о рудования. Основным оборудованием паротурбинной электростанции ЯВЛЯЮТСЯ 1) котельные агрегаты, имеющие задачей превращение подаваемой под дав-лени1ем насосов питательной воды в- перегретый пар необходимых параметров еасчет отнятия тепла от дымовых газов, образующихся при сжигании топлива и 2) турбинные агрегаты, е которых за счет расширения перегретого пара до некоторого конечного давления происходит преобразование части тепловой энергии в механическую, а затем в электрическом генераторе в электрическую энергию.  [c.106]

Для более полного использования природных запасов ядер-ного топлива развитие ядерной энергетики целесообразно строить на сочетании реакторов на тепловых нейтронах, работающих на воде, с реакторами-размножителями на быстрых нейтронах. По ядерно-физическим и теплофизическим свойствам наиболее пригодными теплоносителями в реакторах на быстрых нейтронах могут быть натрий, литий, гелий. Успехи, достигнутые в области технологии жидких металлов, выдвинули на первое место натрий. Интенсивные исследовательские работы проводятся по использованию щелочных металлов в качестве рабочих тел в циклах с МГД-преобразованием и паротурбинных. Изучается использование указанных циклов для транспортных установок, а также применение их в качестве надстройки на обычных тепловых электростанциях. Бинарные циклы со щелочными металлами позволяют заметно повысить КПД станций.  [c.3]

Учитывая возросшее значение вопросов собственно водного режима паротурбинных установок, несмотря на их неразрывную связь с вопросами водоподготовки, представляется более целесообразным изложение их в отдельных монографиях и учебниках (см., например, книгу коллектива авторов под ред. Т. X. Маргуловой Водный режим тепловых электростанций , изд-во Энергия , 1964).  [c.4]

Таким образом, паротурбинная электростаиция является тепловой электростанцией, предназначенной для выработки электроэнергии.  [c.10]

На паротурбинных электростанциях мы постоянно встречаемся с превращениями различных видов энергии. При сжигании твердого, жидкого или газообразного топлива в топке парового котла его химическая энергия превращается в тепловую, передаваемую продуктам сгорания (дымовым газам). Дымовые газы, омывая трубки котла, нагревают находящуюся в них воду до кипения и превращают ее в пар, обладающий определенным запасом теяловой энергии. За счет запаса теп,-  [c.5]

Электрическая энергия, вырабатываемая в электрическом генераторе 24, по кабелю отводится на шины главного распределительного устройства (ГРУ), откуда она распределяется между потребителями. Таким образом, паротурбинная электростанция является тепловой электростанцией, предназначенной для выработки электро-энергип.  [c.9]


Смотреть страницы где упоминается термин Электростанции тепловые паротурбинные : [c.11]    [c.6]    [c.67]    [c.169]    [c.33]    [c.121]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.51 , c.54 ]



ПОИСК



ПАРОТУРБИННЫЕ ЭЛЕКТРОСТАНЦИИ НА ОРГАНИЧЕСКОМ ТОПЛИВЕ Часть первая ЭКОНОМИЧНОСТЬ ПАРОТУРБИННЫХ ЭЛЕКТРОСТАНЦИЙ И МЕТОДЫ ЕЕ ПОВЫШЕНИЯ Тепловая экономичность и энергетические показатели конденсационной электростанции

Паротурбинная ТЭЦ

Паротурбинные электростанции

Паротурбинные электростанции тепловые схемы

Тепловая электростанция

Тепловое хозяйство паротурбинной электростанции

Тепловые схемы паротурбинных электростанций и их расчет

Электростанции



© 2025 Mash-xxl.info Реклама на сайте