Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронная конфигурация структура линейных молекул

Остановимся еще на одной особенности ковалентной связи. Выше при решении уравнения Шредингера для молекулы водорода мы конструировали волновые функции с помощью линейной комбинации атомных орбиталей, выбирая за стартовые атомные орбитали изолированных атомов. Однако такой прямолинейный подход не всегда оказывается успешным и, например, для молекул и кристаллов, содержащих атомы углерода (а также кремния, германия и т. д.), он не привел к успеху. Так, изолированный атом С имеет электронную конфигурацию (ls) (2s) 2px2py. Естественно было ожидать, что углерод окажется двухвалентным с двумя перпендикулярными связями. Однако четырехвалентность углерода хорошо известна и, вообще говоря, она могла быть объяснена возбуждением при образовании молекул одного из 2з-элект-ронов и его переходом в 2рг состояние. В этом случае можно было ожидать появления трех более сильных и одной более слабой связей. Однако экспериментально было надежно доказано, что у углерода наблюдаются 4 равноправные связи с углами 109°28. Этот результат удалось полностью объяснить тем, что при вхождении атомов углерода в соединение (причем с самыми разными атомами углеродом при образовании алмаза, водородом или хлором при образовании СН4 или U и т. д.) происходит перестройка их электронной структуры так, что одна 25 и три 2р орбитали углерода гибридизуются, происходит sp гибридизация и  [c.111]


Структуры (б) и (в) подобны двум резонирующ,им структурам для молекулы СОа, рассмотренным выше,— они отличаются друг от друга ориентацией плоскостей двойных связей. Считается, что для всех трех структур большее число связей (четыре связи, образуемые электронными парами, и одна электростатическая связь) приводит к тому, что энергия оказывается нин е, чем для структуры (а), дан е несмотря на то, что требуется энергия для ионизации центрального атома N. Дальнейшее понижение энергии обусловливается резонансом. Вышеизложенное подтверждает линейность молекулы это следует из тех же соображений, из каких следует линейность геометрических конфигураций таких молекул, как СОо и F N. При реализации каждой из структур (б), (в) и (г) молекула долнша бы обладать большим дипольным моментом, тогда как в состоянии, которое описывается функцией, являюш,ейся линейной комбинацией функций для этих структур, дипольный момент должен быть совсем небольшим, как это на самом деле и наблюдается для молекулы N2O в основном состоянии.  [c.381]

В сиектре молекулы D N, для которой предиссоциация менее интенсивна, была обнаружена вторая система полос, расположенная в той же области спектра и имеющая ту же частоту деформационного колебания v. , что и основная система. Очевидно, в случае H N эта система пе наблюдается в спектре в связи с тем, что она или более снльно. нредиссоциировапа, или в значительной степепи перекрывается основной системой. Характер тонкой структуры второй системы показывает, что и в данном случае возбужденное состояние является состоянием типа А". Два i Л "-состояния, вероятно, возникают из возбужденных 1Д- и i 2 "-состояний, связанных с электронной конфигурацией Таким образом, для линейной молекулы H N переходы А — X и В — X должны быть запрещенными. По этой причине в обеих системах в спектре H N наблюдались, лишь полосы, связанные с переходами на верхние уровни, расположенные ниже потенциального максимума, соответствующего линейной конфигурации (фиг. 68). При этом разности AG в наблюдаемых прогрессиях полос изменяются вполне закономерно. Лишь, к концу прогрессии O aO — ООО небольшой изгиб кривой G становится заметным (Джонс [635]), что согласуется с выводами, ожидаемыми для квазилинейных молекул (фиг. 46j.  [c.505]

В области длин волн, не достигающих границы первой ридберговской серии, Танака, Джурса и Ле Блан [1190] наблюдали две другие серии Ридберга, сходящиеся к пределу при 132 230 сж , и в еще более коротковолновой области — четыре серии с пределом при 162 165 Разница между пределом при 132 230 и самым низким пределом при 104 ООО см.- составляет 28 230 сл1 , что достаточно хорошо согласуется с величиной энергии возбуждения состояния 2 для которой Калломон рекомендует значение 28 229,8 см . Таким образом, предел 132 230 см >- соответствует удалению электрона 7а из электронной оболочки с электронной конфигурацией основного состояния КгО, в то время как предел при 162 165 отвечает удалению электрона со следующей, более низкой орбитали. Ридберговская серия, сходящаяся к среднему пределу, сопровождается рядом колебательных полос. Это и не удивительно, так как изменение в значении В при переходе из основного состояния молекулы КгО в состояние 2+ иона КаО+ значительно больше, чем при переходе в основное состояние П иона КгО+. В связи с тем что ион N20+ линеен в обоих электронных состояниях — основном и возбужденном,— в данном случае не вызывает сомнений предположение о том, что молекула N20 имеет линейную структуру во всех наблюдаемых ридберговских состояниях, включая, очевидно, и состояние, отвечающее наиболее высокому из наблюдаемых ридберговских пределов.  [c.517]


При воздействии радиации можно применять специальные марки ПСМ и масел. Более перспективно использование фракций ароматических углеводородов, усиленных специальными антиради-ационными присадками. Эти материалы сохраняют свойства при высоком потенциале поглощения энергии вследствие присущей им более подвижной конфигурации электронов по сравнению со структурами электронов линейных молекул парафинов.  [c.90]

Из органической хим и известно, что некоторые соединения (например, бензол) ведут себя так, как будто они обладают двумя различными структурами (динамическая изометрия). Волновая механика объясняет это следук>щим образом если вещество может иметь две или несколько электронных конфигураций, то наименьшая энергия не соответствует какому-либо одному. состоянию, а является линейной комбинацией функций отдельных состояний. Это иногда выражается так молекула как бы вибрирует с большой частотой между отдельными состояниями, так что в среднем она находится в каком-то промежуточном состоянии. Однако при этом можно легко впасть в заблуждение, поэтому лучше рассматривать молекулу как находящуюся в новом состоянии, являющемся характеристикой процесса резонанса, который приводит к образованию нового вида молекулы со своей собственной формой электронного облака и со свойствами, отличны.ми от свойств структур, между которыми осуществляется резонанс. Резонансная связь интересна тем, что она предполагает в некоторых определенных соединениях возможность существования отдельных электронов, которые не связаны с индивидуальными связями, а принадлежат всей молекуле и перемещаются внутри нее. Эта подвиж ность представляет интерес в связи с тем, что, как будет показано на стр. 32, она теоретически соответствует связям в металлах вследствие наличия сил подобной же природы.  [c.25]

Мультиплетное расщепление. Если результирующий спин электронов в одном или в обоих электронных состояниях отличен от нуля и если спин-орбитальное взаимодействие не является пренебрежимо малым, то для всех вращательных линий рассмотренных выше полос будет наблюдаться мульти-плетная структура. Как было показано в гл. I, разд. 3, при нелинейной конфигурации многоатомной молекулы мультиплетное расщепление в общем случае невелико и относится к тому же типу, как и в случае связи Ъ но Гунду для двухатомных молекул. Для линейной конфигурации мультиплетное расщепление может быть большим или малым в зависимости от того, какой случай связи, а или Ь по Гунду соответственно, имеет место (при нашем рассмотрении мы не касаемся случая связи с по Гунду). Таким образом, при нзогнуто-линейных и линейно-изогнутых переходах возможны комбинации случай Ь — случай а и случай а — случай Ь или случай Ъ — случай Ъ. Если для линейной конфигурации имеет место случай связи а, то следует рассматривать отдельно переходы с каждой мультиплетной компоненты этого состояния в нелинейное состояние в соответствии с правилами отбора (11,55)—  [c.218]

В случае НгО вторая область поглощения представляет собой прогрессию диффузных полос, простирающихся от 1411 до 1256 А с расстоянием между полосами порядка 800 см- . Такая низкая частота едва ли может соответствовать какому-либо иному колебанию, кроме деформационного. Наличие протяженной прогрессии по деформационному колебанию свидетельствует о значительном изменении величины угла. Действительно, рассматриваемый переход не согласуется с различными ридберговскими сериями, сходящимися к первому ионизационному пределу (отрыв 1 f i электрона), и, очевидно, является первым членом серии, соответствующим отрыву Засэлектрона (гл. III, разд. 2,г). Соответствующее состояние НгО+ является аналогом А состояния NHz (см. ниже), и поэтому представляется весьма вероятным, что в этом состоянии ион НгО+, подобно NH2, имеет почти линейную структуру. Если к иону Н2О+ в этом состоянии добавляется электрон на ридберговской орбитали, то образовавшаяся молекула НгО должна иметь конфигурацию, аналогичную конфигурации иона ИгО+ (или весьма близкую), что позволяет объяснить наблюдаемую колебательную структуру электронного перехода В - Х.  [c.501]

На фиг. 186 приведена диаграмма уровней энергии всех наблюдаемых электронных состояний СНг. Граница серии Ридберга, расиоложе1шая ири 10,396 эв (Герцберг [522]), соответствует ионизации СНг, нричем ион СН образуется в состоянии, в котором он должен иметь линейную структуру (так как молекула СНг линейна в ридберговских состояниях). Имея в виду, что радикал ВНг, изоэлектроипый иону Hf, нелинеен в основном состоянии, можно предполагать, что и ной (>HJ в основном состоянии также имеет нелинейную конфигурацию, и, следовательно, нотенциал ионизации 10,396 эа соответствует первому возбужденному состоянию иона, являющемуся аналогом возбужденного состояния ВНг- В этом случае истинный потенциал ионизации СНг должен быть меньше 1шблюдаемого предела на величину порядка 0,3 яв.  [c.503]


В основном состоянии X Bi молекула NHg сильно изогнута, так же как и молекула Н2О в своем основном электронном состоянии, в то время как в возбужденном состоянии A i молекула NH2 почти линейна (см. стр. 217). Снова, как и для других дигидридов, из-за сильного электронно-колебательного взаимодействия (эффект Реннера — Теллера) из одного П. -состояния линейной конфигурации возникают два состояния. Благодаря значительному изменению угла при электронном переходе в сиектре наблюдается длинная прогрессия полос с чередующейся интенсивностью для четных и нечетных значений К (так же как и в случае красных полос ВНг и СН2). Разности Д гС для уровней с i = О в верхнем состоянии сначала увеличиваются и только к концу прогрессии начинают уменьшаться. Дублетная структура электронного перехода обнаруживается в незначительном расщеплении почти всех линий (фиг. 95). Так же как и для красных полос ВН2 и СНг, момент перехода для рассматриваемой системы NH2 перпендикулярен плоскости молекулы (полосы типа С). Джонс и Рамсей [638а] проанализировали ряд горячих полос в спектре NH2 с целью определения значения частоты деформациоипого колебания V2 в основном состоянии. Вращательные и колебательные постоянные NH2 приведены в табл. 62.  [c.504]

На фиг. 187 изображена геометрическая структура молекулы H N в четырех электронных состояниях, рассмотренных выше. Состояние С А, вероятно, образуется нз сгя п41-состояния линейной конфигурации и, следовательно, переход С — X должен быть разрешенным. Действительно, интенсивность полос системы С — X значительно превосходит интенсивность полос систем А — X и В — X. К сожалению, из-за возрастающей диффузности колебательная структура полос вблизи вертикального перехода не могла быть проанализирована, что свидетельствует о сильном влиянии квазилинейности молекулы (гл. I, разд. 3). Полосы в области длин волн, меньших 1120 А, до настоящего времени но проанализированы ридберговские серии в спектре H N не наблюдались. Поэтому значение потенциала ионизации молекулы H N, основанное на известно.  [c.506]


Смотреть страницы где упоминается термин Электронная конфигурация структура линейных молекул : [c.751]    [c.503]    [c.509]    [c.511]    [c.533]    [c.602]    [c.687]    [c.687]    [c.508]    [c.527]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.20 , c.283 , c.289 , c.345 , c.588 ]



ПОИСК



Конфигурации электронны

Конфигурация

Линейные молекулы

Линейные молекулы электронная структура

Линейный ряд конфигураций

Структура линейная

Электронная структура

Электронные для линейных молекул



© 2025 Mash-xxl.info Реклама на сайте