Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебательная структура электронных состояний

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА ЭЛЕКТРОННЫХ СОСТОЯНИЙ 27  [c.27]

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА ЭЛЕКТРОННЫХ СОСТОЯНИИ 29  [c.29]

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА ЭЛЕКТРОННЫХ СОСТОЯНИЙ 31  [c.31]

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА ЭЛЕКТРОННЫХ СОСТОЯНИЙ 33  [c.33]

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА ЭЛЕКТРОННЫХ СОСТОЯНИЙ 35  [c.35]

КОЛЕБАТЕЛЬНА СТРУКТУРА ЭЛЕКТРОННЫХ СОСТОЯНИЙ 69  [c.69]

Колебательная структура электронных состояний 27—71  [c.739]


С учетом проведенного выше разбиения энергии молекулы можно записать волновое число для перехода между выделенными состояниями п и п" в виде x = E ,—En, = T +G +F —(T"e+G" + F ). Соответственно наблюдают спектры нескольких типов а) вращательные спектры, отвечающие переходам между вращательными уровнями в пределах неизменного колебательного и электронного состояния б) колебательно-вращательные спектры, возникающие при переходах между вращательными уровнями разных колебательных состояний при неизменном электронном состоянии в) электронные спектры, характеризующие переходы между колебательно-вращательными уровнями разных электронных состояний. Помимо того, в радиочастотной и микроволновой областях спектра наблюдают переходы между подуровнями тонкой структуры для данного электронно-колебательно-вращательного уровня молекулы, а также спектры электронно-спинового и ядерно-магнитного резонансов, соответствующих переходам между зеемановскими компонентами расщепленных в магнитном поле уровней молекулы.  [c.849]

Рио. 3. Электронно-колебательный спектр молекулы азота, полученный в трубке Гейслера. Хорошо видна колебательная структура электронной полосы, возникающая в результате переходов между различными колебательными состояниями электронных уровней. Переходу между электронными уровнями без изменения колебательно ) квантового числа (Ли = 0) соответствует полоса 3371 А. Справа и слева от нее расположены системы полос, получающиеся при том же электронном переходе, но с одновременным увеличением пли уменьшением колебательного квантового числа V.  [c.291]

Энергетические состояния различных частиц определяются их строением и движением. Так, в молекулах энергетические состояния определяются колебательными и вращательными уровнями, в атомах и ионах — тонкой структурой электронных энергетических уровней [9].  [c.504]

На рис. 6.14 приведены схемы энергетических уровней основных электронных состояний молекул СО2 и N2. Поскольку N2 — двухатомная молекула, она имеет лишь одну колебательную моду на рисунке показаны два нижних уровня (и = 0, v= )-Структура энергетических уровней молекулы СО2 более сложная, поскольку эта молекула является трехатомной. Здесь мы имеем три невырожденные колебательные моды (рис. 6.15), а именно 1) симметричную валентную моду, 2) деформационную моду и 3) асимметричную валентную моду. Поэтому колебания молекулы описываются тремя квантовыми числами П], П2 и пз, которые определяют число квантов в каждой колебательной моде. Таким образом, соответствующий уровень обозначается этими тремя квантовыми числами, записываемыми  [c.361]


При расшифровке тонкой вращательной структуры электронно-колебательно-вращательных спектров можно определить вращательные постоянные В,, и В,., а из них и межъядерные расстояния молекул в основном и возбужденных электронных состояниях, как это делалось в случае колебательно-вращательных спектров (см. 12).  [c.80]

При воздействии видимого или ультрафиолетового излучения на вещество молекулы переходят из основного электронного состояния Ео в более высокие энергетические состояния ь 2, 3, Еп. Каждый такой переход сопровождается также изменением колебательных и вращательных состояний. Образующиеся электронные спектры поглощения во многом похожи на электронно-колебательно - вращательные спектры двухатомных молекул, но они гораздо сложнее и для них чаще наблюдаются области непрерывного поглощения из-за многочисленных отталкивательных электронных состояний. Расшифровка вращательной структуры таких спектров и определение по ним молекулярных постоянных является очень сложной проблемой, которая решена для довольно ограниченного круга соединений.  [c.94]

В растворах колебательная структура проявляется довольно редко, чаще наблюдаются широкие полосы, связанные с электронным переходом (рис. 1.45). По ним можно судить в основном только об энергии электронных состояний, информация же о частотах колебаний очень ограничена. В этих случаях необходимо-исследовать ИК- и КР-спектры.  [c.95]

При поглощении или испускании видимого или ультрафиолетового излучения изменяется электронная энергия молекулы. Такой переход обычно сопровождается изменением колебательных и вращательных состояний. Возникающий при этом электронный спектр имеет сложную полосато-линейчатую структуру. Если поглощение или испускание света приводит к изменению колебательной и вращательной энергии молекулы (АЕе=0), то возникает полосато-линейчатый колебательный спектр, расположенный в инфракрасной области (ИК-спектр). Переходы с изменением только вращательной энергии (Д е=0, АЕ —О) дают более простой линейчатый спектр в далекой инфракрасной, а также микроволновой областях.  [c.10]

Рассматриваются общие закономерности электронного поглощения и испускания многоатомных соединений в жидкой фазе. Благодаря взаимодействию со средой, а также миграции колебательной энергии внутри системы процессы поглощения и испускания сложных молекул подчиняются определенным статистическим закономерностям. Это позволяет получить ряд, спектральных соотношений универсального характера и предложить достаточно общие методы определения молекулярных спектроскопических и термодинамических параметров. Они могут быть использованы при исследовании процессов перераспределения колебательной энергии и условий нарушения термодинамического равновесия в растворах, изучении конфигурации частиц среды и релаксации электронных состояний, для разделения полос поглощения и испускания, структура и форма которых искажаются за счет перекрывания спектров нескольких электронных переходов, различных типов центров, наличия примеси, что необходимо для последовательного и глубокого анализа влияния среды на спектры.  [c.30]

При электронно-колебательных переходах между основным и возбужденным состояниями сложной молекулы возникает сплошная асимметричная полоса поглощения с одним максимумом (рис. 11,6). Более крутым является ее длинноволновой склон. Полуширина полосы может достигать нескольких тысяч см Из-за размытия колебательной структуры спектры сложных молекул частично теряют свою индивидуальность. Спектры разных соединений различаются положением, полушириной, асимметрией. Стабильность контура сохраняется и по отношению к различным внешним воздействиям замене растворителя, изменению температуры и другим факторам.  [c.32]

Колебательная структура электронных спектров. Поверхности потенц, энергии и соответствующие им системы колебат. уровней разл. электронных состояний иогут существенно отличаться друг от друга, поэтому колебат. структура электронных переходов подчиняется довольно сложным правилам отбора и электронно-колебат. спектр сильно отличается от чисто колебательного. Тем не менее оси. особенности колебат. структуры поддаются не только качеств., но и количеств, анализу. Теоретич. основой этого анализа является Франка — Кондона принцип, позволяюпщй предсказывать распределение интенсивностей полос колебат. структуры,  [c.203]


В случае НгО вторая область поглощения представляет собой прогрессию диффузных полос, простирающихся от 1411 до 1256 А с расстоянием между полосами порядка 800 см- . Такая низкая частота едва ли может соответствовать какому-либо иному колебанию, кроме деформационного. Наличие протяженной прогрессии по деформационному колебанию свидетельствует о значительном изменении величины угла. Действительно, рассматриваемый переход не согласуется с различными ридберговскими сериями, сходящимися к первому ионизационному пределу (отрыв 1 f i электрона), и, очевидно, является первым членом серии, соответствующим отрыву Засэлектрона (гл. III, разд. 2,г). Соответствующее состояние НгО+ является аналогом А состояния NHz (см. ниже), и поэтому представляется весьма вероятным, что в этом состоянии ион НгО+, подобно NH2, имеет почти линейную структуру. Если к иону Н2О+ в этом состоянии добавляется электрон на ридберговской орбитали, то образовавшаяся молекула НгО должна иметь конфигурацию, аналогичную конфигурации иона ИгО+ (или весьма близкую), что позволяет объяснить наблюдаемую колебательную структуру электронного перехода В - Х.  [c.501]

Спектром испускания (флуоресценции) называется распределение интенсивности испускаемой веществом энергии по частотам (или длинам волн). Вид спектра флуоресценции определяется составом и строением флуоресцентного центра, а также влиянием растворителя. Как и длинноволновая полоса поглощения, спектр флуоресценции сложных молекул не имеет колебательной структуры и представляет собой одну довольно широкую бесструктурную полосу (рис. 34.4). Такое строение полос поглощения и флуоресценции свидетельствует о том, что колебательные уровни 1[ижнего и верхнего электронных состояний не дискретны, а образуют непрерывную последовательность.  [c.251]

В качестве еще одного примера рассмотрим спектры поглощения и люминесценции молекулы красителя родамина 6G. Молекулярные оптические спектры обусловлены значительно более сложной картиной переходов, нежели спектры атомов или ионов. В этом случае начальное и конечное состояния представляют собой не отдельные электронные уровни, а совокупности колебательных и вращательных уровней, каждая из которых соответствует определенному электронному состоянию молекулы. Чем сложнее молекула, тем богаче указанная совокупность колебательно-вращательных состояний, тем плотнее расположены уровни в этой совокупности. Все это объясняет, почему спектры поглощения н люминесценции молекул красителей обычно не обнаруживают тонкой структуры и характеризуются большой шириной (порядка 0,1 мкм). Вид этих спектров для молекулы родамина 6G приведен на рис. 8.5, а (1—спектр поглощения, 2 — спектр люминесценции). Рисунок хорошо ИЛЛЮСТ- fy 1  [c.193]

Колебательная ст ктура вырожденных электронных состояний М. Колеб ат. структура синглетных электронных состояний М. описывается ф-лами (13) — (15), в к-рых, однако, следует учесть зависимость частот колебаний и постоянных ангармоничности от электронного состояния. Они также описывают уровни невырожденных колебаний в вырожденных электронных состояниях или же уровни вырожденных колебаний в невырожденных электронных состояниях. Качественно новые эффекты возникают в вырожденных электронных состояниях при возбуждении вырожденных колебаний, в основном за счёт взаимодействия колебат. угловых моментов вырожденных колебаний с электронным орбитальным угл. моментом.  [c.189]

Ознакомление с полосатыми спектрами двухатомных молекул и методикой расшифровки их колебательной структуры на примере спектров испускания молекул СЫ, АЮ, ВО и др., возбуждаемых в электрической дуге. Определение молекулярных постоянных (Ор, (ОеХе и энергии возбужденного электронного состояния Те- Построение кривых потенциальной энергии и оценка энергии диссоциации. Расчет по молекулярным постоянным термодинамических функций.  [c.191]

По квантовомеханическим представлениям молекула как целое может находиться в различных дискретных энергетических состояниях. Спектры, поглощения и люминесценции, отвечающие переходам из одного электронного состояния в другое, как правило, наблюдаются в ультрафиолете, иногда в видимой области. В ряде случаев (двуатомные молекулы) они имеют резко выраженную полосатую структуру вследствие наложения колебательных и вращательных термов на основной электронный переход.  [c.773]

Спектр молекулы СО2 построен из набора нормальных колебаний частоты Уз, их обертонов и комбитонов. Схематически, с учетом системы вращательных уровней, на рис. 14.2 показана структура нижних колебательных уровней основного электронного состояния молекулы СО2 и несколько верхних возбужденных состояний колебания Уд. Соответствующие уровни обозначены комбинацией квантовых чисел  [c.117]

Ф. д. ф 1, а спектр поглогцения сплошной. При наличии минимума у потенц. кривой возбужденного состояния последнее характеризуется своим значением энергии диссоциации D , к-рое обычно меньше значения энергии диссоциации основного состояния. Поглощение квантов света с hv С hVj, не приводит к Ф. д., а в соответствующей области спектра возможно проявление колебательно-вращательной структуры. Для спектра поглощения и атом случае характерно схождение полос к границе диссоциации верхнего электронного состояния hv . . Кванты света с hv > /iV p (рис., б) вызывают Ф. д., а спектр переходит в сплош-  [c.357]

Симметрия молекул. Характеристика э,лектроняо-колебательно-вращательных состояний молекул и структура М. с. зависят от симметрии равновесных конфигураций молекул (т. е. конфигураций, соответствующих устойчивым электронным состояниям), определяющей симметрию квантовых состояний и отбора правила в, 1. с.  [c.292]


Вращательная структура электронно-колебательной полосы для двухатомной молекулы определяется ф-лой (26) и для дипольного излучения получаются, согласно правилу отбора Д7 = О, 1, три ветви — Q, Я и Р, частоты линий в к-рых даются ф-лами (29) и (27) (для 2—2 переходов А/ == О и Q-вeтвь отсут-ств ет). Однако, в отличие от колебательно-вращательных спектров. В и В относятся к различным электронным состояниям и могут сильно отличаться, поэтому В В" может быть сравнимо с В в В" наряду с В < В возможен и случай В > В". В результате в одной из ветвей (й-ветвь при В < В" и Р-ветвь при В > В") вращательные линии сгущаются, образуя резкую границу полосы — кант, и полоса оттенена в противоположную сторону. При В С В" получается оттенение в сторону меньших V (красное оттенение), при В >- В" — в сторону больших V (синее оттенение). Зависимость между V и то( (V = Го г )(рис. 16) наз. диаграммой Фортра.  [c.296]


Смотреть страницы где упоминается термин Колебательная структура электронных состояний : [c.27]    [c.740]    [c.740]    [c.193]    [c.172]    [c.47]    [c.71]    [c.83]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.27 , c.71 ]



ПОИСК



Вращательная структура электронных состояний невырожденных электронно-колебательных уровней

Г-состояния колебательная структура

Г-состояния, F-состояния электронные

Колебательная структура электронных

Колебательные

Свойства симметрии вращательных уровней.— Тонкая структура невырожденных электронно-колебательных состояний,— Тонкая структура в вырожденных электронно-колебательных состояниях Молекулы тина асимметричного волчка

Состояние электронов

Состояния колебательные

ЭЛЕКТРОННЫЕ состояния Структура Зои

Электронная структура

Электронные состояния



© 2025 Mash-xxl.info Реклама на сайте