Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства металла электродов сталей

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]


Ст. Зсп. Относительно лучшие свойства разупрочненного участка стали Ст. Зсп по хладостойкости достигаются при погонной энергии сварки выше 5500 кал/см (см. рис. 26, а, /). При сварке электродами УОНИ 13/55, МР-3, ОЗС-4, ОЗС-б получаемый металл шва имеет порог хладноломкости при более низких температурах, чем участок зоны наибольшего разупрочнения стали Ст. Зсп. Поэтому сварку стали Ст. Зсп при температурах ниже —30°С можно вести любыми из этих электродов, предварительно прокаленными при оптимальных режимах.  [c.70]

ЦМ 7-Э 42-5, 0-Р, ГОСТ 9467—60 Типы электродов и механические свойства металла шва (графа А ) и сварного соединения (графа Б ) для сварки конструкционных сталей  [c.363]

Типы электродов и механические свойства металла шва или наплавленного металла для сварки теплоустойчивых сталей  [c.363]

Механические свойства наплавленного металла (электродов из малоуглеродистой стали) должны удовлетворять требованиям, приведённым в табл. 16 и 17.  [c.152]

Механические свойства металла шва, наплавленного металла и сварного соединения, выполненных электродами для сварки конструкционных сталей, а такл<е предельное содержание серы и фосфора в наплавленном металле (для сталей некоторых марок они приведены в табл. 3.16), а также минимальные механические свойства (при нормальной температуре) металла шва или наплавленного металла электродами для сварки легированных теплоустойчивых сталей и химический состав наплавленного металла установлены ГОСТ 9467—75.  [c.335]

Основные типы покрытых металлических электродов для ручной дуговой сварки высоколегированных сталей с особыми свойствами установлены ГОСТ 10052—75. Химический состав наплавленного металла и механические свойства металла шва и наплавленного металла при нормальной температуре для некоторых марок электродов приведены в табл. 3.16.  [c.339]

Контроль материалов должен обеспе-, чить соответствие применяемых марок сталей и сварочных материалов требованиям стандартов и технических условий. Он включает в себя определение химического состава и механических свойств используемых плавок сталей и партий сварочных материалов (проволока, электроды, сварочные флюсы и защитные газы). Для сварных конструкций из аустенитных сталей обязательной является также проверка сопротивляемости металла шва образованию трещин, осуществляемая путем сварки жестких технологических проб.  [c.94]


Механические свойства металла шва, наплавленного металла и сварного соединения, выполненных электродами для сварки конструкционных сталей, должны соответствовать нормам, приведенным в табл. 13.  [c.25]

Химический состав и особые механические свойства металла шва и наплавленного металла, образуемых покрытыми электродами для ручной дуговой сварки высоколегированных сталей  [c.73]

ГОСТ 2246-70 регламентирует химический состав 77 марок сварочной проволоки, используемых в качестве электродной, присадочной, наплавочной и для изготовления покрытых электродов для ручной дуговой сварки (табл. 2.7). Стандарт регламентирует только химический состав и размеры сварочной проволоки, так как механические свойства металла шва зависят от многих других факторов (доли участия основного металла, марки флюса, режима сварки и т.д.). Стандартом предусмотрены диаметры проволок (мм) 0,3 0,5 0,8 1,0 1,2 1,4 1,6 2,0 2,5 3,0 4,0 5,0 6,0 8,0 10,0 12,0. Стандарт распространяется на холоднотянутую сварочную проволоку из низкоуглеродистой, легированной и высоколегированной сталей.  [c.57]

Электроды для дуговой сварки конструкционных сталей и механические свойства металла шва  [c.309]

Сварка под флюсом. Этот один из основных способов сварки высоколегированных сталей толщиной 3. .. 50 мм имеет большое преимущество перед ручной дуговой сваркой покрытыми электродами ввиду стабильности состава и свойств металла по всей длине шва при сварке с разделкой и без разделки кромок. Это достигается отсутствием частых  [c.367]

Электроды также подразделяются на типы в зависимости от механических свойств металла шва (для конструкционных сталей) и механических свойств и химического состава металла шва (для теплоустойчивых и высоколегированных сталей).  [c.389]

При работе на открытом воздухе всегда возможно сдувание защитной атмосферы и ухудшение, вследствие этого, качества сварного соединения. При наличии проволоки соответствующего состава можно пойти на сварку без всякой защиты зоны сварки от воздуха — требуемые свойства металла шва обеспечиваются и при свободном доступе воздуха к месту сварки. Сварку незащищенной дугой можно выполнять электродом сплошного сечения или порошковой проволокой [42]. В первом случае неизбежно обогащение металла шва азотом и кислородом, во втором— может быть создана газошлаковая защита металла шва от окружающей атмосферы за счет компонентов, запрессованных внутри трубчатого электрода. В применении к аустенитным сталям и сплавам проволока сплошного сечения стоит значительно дешевле, чем порошковая. Поскольку невозможно избежать повышения содержания кислорода и азота в металле шва при сварке сплошной голой проволокой незащищенной дугой, должны быть приняты меры для нейтрализации отрицательного действия этих газов.  [c.348]

Марка свариваемой стали Марка электродной проволоки (ГОСТ 2246—60) Марка покрытия Обозначение электрода по нормали В НМ-2-56 Возможность сварки в различных положениях Механические i сварного соединения свойства металла шва  [c.720]

Каждая группа электродов по назначению имеет свою группу индексов, которые кодируют необходимые свойства металла для обеспечения надежной эксплуатации сварных соединений из различных сталей.  [c.103]

Стандартные марки электродов для сварки данных сталей, их полное условное обозначение, технологические особенности, назначение, а также структурные классы свариваемых сталей и марки сварочной проволоки для стержня электрода представлены в табл. 4.29, механические свойства металла, наплавленного этими электродами с указанием режимов термообработки — в табл. 4.30, а содержание ферритной фазы в наплавленном металле — в табл. 4.31.  [c.119]

Механические свойства металла, наплавленного электродами для дуговой сварки легированных теплоустойчивых сталей  [c.140]

Механические свойства металла, наплавленного электродами для дуговой сварки нержавеющих высокохромистых сталей, не предусмотренными стандартами  [c.158]


Механические свойства металла, наплавленного электродами для дуговой сварки жаростойких аустенитных сталей и сплавов на железоникелевой и никелевой основах, не предусмотренными стандартами  [c.165]

Образцы сваривали электродами ЦЛ-11 и ВП-12-6 с проволокой из стали 1Х18Н9Б и 18-8. В табл. 69 приведены механические свойства металла шва стали Х17Т, сваренного различными электродами, а в табл. 70 и 71 — химический состав металла шва и состав электродов.  [c.180]

Приведенные в табл. 56 данные показывают, что механические свойства металла швов при сварке порошковыми проволоками находятся примерно на уровне свойств соединений, выполненных электродами типа Э50А но ГОСТ 9467—75. Для сварки ответственных конструкций из низкоуглеродистых и низколегированных сталей можно рекомендовать проволоки ПП-2ДСК и 1Ш-АН4, обеспечивающие хорошие показатели хладноломкости швов.  [c.228]

Весьма благоприятные металлургические условия при сварке высокохромистых сталей создает сварка в инертных защитных газах, как правило, в аргоне и в некоторых смесях на его основе. Причем в основном используют сварку неплавящимся вольфрамовым электродом, а присадочный материал подбирают аналогичным желаемому составу наплавленного металла. При этом виде сварки в шоп удается вводить почти без потерь такие весьма активные элементы (улучшающие свойства металла шва), как титан и алюминий. Однако по причинам понижения производительности сварки и ее низкой экономичности применение этого метода обычтю ограничивается изготовлением изделий малых толщин и выполнением корневого валика в многослойных швах металла больших толщин, например в изделиях турбостроения.  [c.265]

Сварка плавящимся электродом в углекислом газе хотя и обеспечивает обычно достаточное оттеснение воздуха от сварочной зоны, однако оказывает значительное окислительное воздействие на металл. Для борьбы с недопустимым окислением металла шва в электродную проволоку необходимо вводить специальные рас-кислители в количествах, достаточных для предохранения от вы1 ораиия основных элементов, определяющих свойства металла шва. Принципиально возможна и разработка порошковых проволок для сварки рассматриваемых сталей.  [c.265]

Технические свойства электродов из высокохромистых сталей определяют и свойства металла швов сварных соединений из сталей подобного состава. При применении хромоникелевых электродов, в связи с отличием химического состава наплавлеппого металла от основного, свойства металла шва значительно отличаются от свойств как основного, так и наплавленного металлов (табл. 68).  [c.275]

Процесс сварки конструкции сопровождается термическим и деформационным воздействиями на свариваемый металл, производимыми при определенных условиях, связанных с технологией получения неразъемного соединения. Данные условия определяют способ сварки, тип и химический состав применяемых материалов (сварочной проволоки. электрода, флюса, газа и т. д.) и зависят от многих факторов, главными из которых являются марка свариваемых сталей и сплавов, их толщина и тип сварной конструкции (балка, ферма, оболочка, детали машин, корпуса раз/шчно-го рода изделий). При этом химический состав и механические свойства металла шва, выполненного, например, сваркой плавлением, в значительной степени отличаются от состава и свойств основного металла, так как на стадии существования сварочной ванны происходит смешивание наплавляемого присадочного металла и расплавляемого основного. Поэтому с точки зрения химического состава и механических свойств принято считать, что в сварном соединении имеются как минимум два различных металла — свариваемый и металл шва. Последний рассматривают как  [c.13]

Электроды покрытые для сварки коррозионно-жаростойких и жаропрочных сталей — мартенситного, мартенситно-ферритного, ферритного, аустеиитно-ферритного и аустенитного классов. Электроды поставляются но ГОСТ 10052—75 31 тина по гарантированному химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла (табл. 42). Полный химический состав наплавленного металла приведен в ГОСТ 10052—75. Приближенные его значения можно определить расшифровкой названий типов электродов, пользуясь данными, нриведенньши на с. 10.  [c.66]

Механические свойства иаплавленного металла электродов из малоуглеродистой стали на стандартных образцах (по ОСТ 7637), вырезаемых из сварного шва  [c.152]

Сварка используется для соединения элементов конструкций, имеющих самую различную толщину. При сварке тонких сечений материала мало, и если он имеет склонность к возникновению остаточных напряжений, то наблюдающиеся дефекты являются в основном дефектами сварки при сварке толстых сечений наиболее серьезными дефектами являются трещины которые непосредственно вызываются напряжением, возникающим при объемных изменениях, в частности, в зоне термического влияния. В предельном случае сварки за один проход соединение можно получить без использования присадочного металла. В последнее время максимальное сечение, которое могло быть сварено газовой сваркой, было значительно увеличено в результате разработки и внедрения электронно-лучевой сварки, которая позволяет получить локальную зону проплавления глубиной порядка нескольких сантиметров. При соответствующем материале и отсутствии газовыделения электронно-лучевая сварка является прогрессивным процессом, однако для ее осуществления необходимо либо иметь сварочную камеру, которую можно было бы вакууми-ровать, либо обеспечить вакуум в точке сварки. Хотя, в принципе желательно, чтобы сварное соединение обладало такими же свойствами, как основной металл, на практике это не всегда возможно, и поэтому во многих случаях используют сварку с присадочным металлом, который менее склонен к образованию трещин. Примерами применяемых при сварке присадочных металлов, которые отличаются по составу от основного металла, являются сталь с 2,25% Сг и 1% Мо для сварки 0,5% Сг, Мо, V сталей сталь с контролируемым содержанпем феррита для сварки аусте-нитных сталей и специальные электроды типа In o А для никелевых сплавов. Много попыток было сделано, чтобы разработать электроды для 0,5% Сг, Мо, V сталей, однако наплавленный металл этого состава имел очень низкую пластичность и, кроме того, приобретал высокое сопротивление деформации при выпадении карбида ванадия, повышающего склонность к образованию  [c.72]


Включения наличествовали в материалах вакуумно дугового переплава с самого начала его применения hi присутствуют в настоящее время и будут присутствовать i будущем. Вообще говоря, эти включения нежелательны, иб< было показано их вредное влияние на свойства материала Это стало особенно ясно недавно, после того как обнару жили ухудшение характеристик малоцикловой усталости мате риалов, загрязненных включениями. Опыт показывает, что применением вакуумно-дугового переплава чистота материа лов по включениям все-таки улучшается. Однако некоторые крупные включения, появившиеся в материале еще на стадия изготовления электрода, в ряде случаев могут быть обнару жены. Поскольку металл лишь кратковременно подвергаетс5 воздействию низкого давления и высокой температуры, боль шинство включений оксидного типа, по-видимому, скорее физически удаляется на поверхность ванны, нежели исчезае за счет диссоциации оксидов. Полагают, что флотируемые оксидные включения в конечном счете перемещаются на крар ванны в зону, известную под названием "корона". Обнаружи ли, что эта зона представляет собой скопления у стено изложницы и содержит агломерированные массы из оксидных ( нитридных включений. Хотя очистительная роль вакуумно-дугового переплава по отношению к включениям являете признанной, этот процесс не излечивает полностью от все загрязнений, так что степень улучшения чистоты по-прежнему остается функцией чистоты исходных электродов.  [c.140]

При сварке углеродистых сталей уменьшения склонности к образованию горячих трещин добиваются снижением содержания углерода в наплавленном металле вследствие применения сварочной проволоки с меньшим содержанием углерода по сравнению с основным металлом. Одновременно шов легируют марганцем и кремнием, которые обеспечивают сохранение необходимых механических свойств металла шва. Кроме того, присутствие марганца связывает серу в соединение MnS, в котором сера находится в виде твердого раствора. Температура плавления такого раствора выше 1180°С, поэтому в шве снижается количество легкоплавких примесей, способствующих образованию горячих трещин. Для сварки углеродистых сталей можно рекомендовать ручную дуговую сварку покрытыми электродами, сварку са-мозащитной порошковой проволокой, под флюсом, сварку в атмосфере защитных газов (аргона, аргона с добавлением кислорода или углекислого газа), электрошлаковую, газовую или контактную сварку.  [c.508]

Электроды для сварки углеродистых и легированных конструкционных сталей лелятся на 14 типов и обозначаются буквой Э и следующими за ней двумя-тремя цифрами, указывающими на гарантированный минимальный уровень временного сопротивления разрыву а, (в кгс/мм ) наплавленного металла или шва, электроды типа Э50 -электроды, обеспечивающие прочность не ниже = 50 кгс/мм Буква Л в конце обозначения, например Э50А, указывает на повышенные пластические свойства металла шва по показателям относительного удлинения и ударной вязкости по сравнению с электродами того же типа без этой буквы.  [c.69]

При сварке высокохромистых сталей в инертных защитных газах (аргоне и смесях на его основе) имеются благоприятные металлургические условия для снижения выгорания Сг и других легирующих элементов. Причем в основном используют сварку неплавящимся вольфрамовым электродом, а присадочный материал подбирают аналогичным желаемому составу наплавленного металла. При этом виде сварки в шов удается вводить почти без потерь такие весьма активные элементы (улучшающие свойства металла шва), как тйтан и алюминий. Однако из-  [c.328]

Хромоникелевые стали (1Х18Н9Г) обладают высокой коррозионной стойкостью в агрессивных средах. Сварка этих сталей производится преимущественно методом с использованием электродов со специальными качественными покрытиями. В исключительных случаях возможно применение газовой сварки для стали толщиной не более 1—2 мм при условии применения специального флюса и последующей термической обработки сварного соединения. Однако механические свойства металла шва все же несколько ниже, чем у основного металла в исходном состоянии. На практике стали этого класса чаще всего свариваются аргонодуговыми методами.  [c.94]


Смотреть страницы где упоминается термин Свойства металла электродов сталей : [c.241]    [c.228]    [c.296]    [c.46]    [c.421]    [c.213]    [c.214]    [c.177]    [c.184]    [c.366]   
Справочник по специальным работам (1962) -- [ c.162 , c.166 , c.167 , c.172 , c.176 , c.180 , c.181 ]



ПОИСК



Металлов Свойства

Свойства электродов

Сталь Свойства



© 2025 Mash-xxl.info Реклама на сайте